Общие химические свойства оксидов
Оксиды могут участвовать в окислительно-восстановительных реакциях приводящих к изменению степени окисления данного элемента:
1°. Восстановление оксидов. Восстановители (C, CO, H2 , CH4 , и др., активные металлы, такие как Mg, Al) при нагревании восстанавливают многие элементы из оксидов до простых веществ:
ZnO + C Zn + CO
WO3 + 3 H2 W + 3 H2O
3 CuO + 2 NH3 3 Cu + N2 + 3 H2O
P4O10 + 10 C P4 + 10 CO
9 CuO + 2 CH3NH2 9 Cu + N2 + 2 CO2+ 5 H2O
4 Al + 3 O2
CuO + CO Cu + CO2
Cr2O3 + 2 Al 2 Cr + Al2O3
SiO2 + 2 Mg Si + 2 MgO
2 NO2 + 4 Cu 2 N2 + 4 CuO
CO2 + 2 Mg C + 2 MgO.
2°. Окисление оксидов. Оксиды элементов, проявляющих переменные степени окисления, могут участвовать в реакциях, приводящих к повышению степени окисления данного элемента:
+ 4 NaOH + 3 NaNO3 2 + 3 NaNO2 + 2 H2O
3 + KClO3 3 + KCl
+ 4 KOH + 3 KNO3 3 KNO2 + 2 + 2 H2O
+ 3 Cl2 + 10 KOHконц. 2 + 6 KCl + 5 H2O
2 + O2 = 2
2 NO2 + O3 = + O2.
3°. Пассивация оксидов. Термическое разложение гидроксидов при высоких температурах (> 1000°C) приводит к получению оксидов в химически малоактивной форме. Оксиды полученные таким путем не растворяются ни в кислотах, ни в щелочах. Перевести их в растворимое состояние можно только лишь сплавлением с кислыми солями или щелочами. Примером могут служить оксиды алюминия, хрома, титана.
Глава 2
Кислоты и основания
Теории кислот и оснований
Понятия «кислота» и «основание» сформировались в XVII веке. Однако содержание этих терминов неоднократно пересматривалось. Существует несколько теорий кислот и оснований. Здесь будут рассмотрены только три теории, которые чаще всего используются для объяснения химических процессов.
Электролитическая теория
На основании теории электролитической диссоциации (1887), предложенной шведским физико-химиком Сванте Аррениусом (1859 – 1927 гг.), можно дать следующие определения кислотам и основаниям:
Кислоты — электролиты, которые при диссоциации в водных растворах, в качестве катионов дают только катионы водорода (гидроксония — H3O+) и анионы кислотного остатка.
Например,
HNO3 « H+ + .
Основания — электролиты, которые при диссоциации в водных растворах в качестве анионов дают только анионы гидроксила (OH–) и катионы.
Например,
KOH « K+ + OH –.
Протолитическая теория
Датский физико-химик Йоханнес Бренстед (1879 – 1947 гг.) и английский химик Томас Лоури (1874 – 1936 гг.) практически одновременно (1928 – 1929 гг.) предложили протолитическую теорию кислот и оснований, согласно которой
кислота — донор катионов водорода:
HAn « H+ + An–
Кислоты могут быть:
а) молекулярными HCl « H + + Cl –
б) катионными « NH3 + H +
в) анионными « + H +
Основание — акцептор катионов водорода.
Основания делятся на
а) молекулярные NH3 + H + «
б) анионные OH – + H + « H2O
в) катионные AlOH2+ + H+ « Al3+ + H2O
Амфотерные вещества (амфолиты) — это вещества, которые являются как донорами, так и акцепторами протонов. Они могут быть заряженными, например:
« H + +
+ H + « H3PO4
и нейтральными:
H2O « H + + OH –
H2O + H + « H3O+.
Кислоты и основания существуют только как сопряженные пары:
кислота « основание + протон
Кислотно-основной процесс сопряженных кислот и оснований может быть выражен общей схемой:
AH + B « BH+ + A–,
где AH, BH+ — кислоты B, A– — основания.
Протон не существует в растворе в свободном виде, в воде он образует катион гидроксония H3O+.
Понятия кислоты в протолитической и электролитической теориях совпадают, однако понятие «основание» охватывает более широкий круг соединений: основаниями могут быть вещества, которые не имеют анионов ОН –, например, NH3 , (C2H5)2O.
Электронная теория
В 1926 г. американский физико-химик Гилберт Льюис (1875 – 1946 гг.) предложил электронную теорию кислот и оснований.
По его теории к кислотам относятся вещества, являющиеся акцепторами электронной пары, а к основаниям — донорами электронной пары
Отличительным признаком этой теории является то, что кислота и основание взаимодействуют друг с другом с образованием связи по донорно-акцепторному механизму:
A + : B « A : B,
где A — кислота,:B — основание, A : B — кислотно-основный комплекс (продукт нейтрализации).
В результате приобретения атомом, ответственным за кислотные свойства, электронной пары часто возникает завершенная электронная конфигурация. В отличие от электролитической и протолитической теорий, к кислотам относят соединения, не содержащие водород (апротонные кислоты).
Например:
: NH3 + BF3 « NH3BF3,
BF3 является кислотой.
Таблица 4
Некоторые примеры “реакций нейтрализации”
Кислота | Основание | Кислотно-основный комплекс |
H+ | OH– | H2O |
CO2 | H2O | H2CO3 |
AlCl3 | Cl– | [AlCl4]– |
Zn(OH)2 | 2OH– | [Zn(OH)4]– |
BF3 | NH3 | BF3 × NH3 |
BF3 | (C2H5)2O | (C2H5)O × BF3 |
SbCl5 | (C2H5)2O | SbCl5 × (C2H5)2O |
Ag+ | 2CN | [Ag(CN)2]+ |
Понятия основания в теориях Бренстеда (протолитическая теория) и Льюиса совпадают, однако понятие кислоты в электронной теории охватывает, кроме протона, более широкий круг частиц способных акцептировать электронную пару.
Растворение кислот Льюиса в ионизирующих растворителях (например, в H2O) приводит к росту концентрации ионов водорода (катионов гидроксония):
AlCl3 + 2 H2O « Al(OH)Cl2 + H3O+ + Cl –
SO3 + 2 H2O « H3O+ + .
Растворение оснований Льюиса в воде приводит к увеличению концентрации анионов OH– :
NH3 + H2O « + OH –
(CH3)NH2 + H2O « (CH3) + OH –.
Кислотные свойства ортоборной кислоты H3BO3 обусловлены не электролитической диссоциацией этого соединения, а образованием катионов гидроксония (H3O+) по реакции:
H3BO3 + 2 H2O « [B(OH)4] – + H3O+.
Кислоты
Классификация кислот.
Здесь будут рассмотрены соединения, являющиеся кислотами с позиции электролитической теории.
Классификация кислот может быть проведена по различным признакам.
1°. Кислоты неорганические (HNO3 , H2SO4 и др.) и органические (CH3COOH, C2O4H2 и др.). Далее в этом разделе будем рассматривать неорганические кислоты.
2°. По содержанию кислорода в кислотном остатке:
а) бескислородные — HnX, где X — галоген, халькоген или неорганический радикал типа CN, NCS и др. Например, HCl, H2S, HCN.
б) кислородсодержащие (оксокислоты), с общей формулой HnЭOm , где Э — кислотообразующий элемент. Некоторые оксокислоты могут содержать несколько атомов кислотообразующего элемента, например H4P2O7 , H2S2O7 . При этом однотипные фрагменты связаны через атом кислорода: Э—О—Э, В таких кислотах одинаковые фрагменты могут образовывать как открытые цепи, например, H2S2O7 , так и циклические структуры, например, (HPO3)n :
Пиросерная кислоита | Метафосфорная кислота |
Оксокислоты характерны для многих химических элементов, особенно для элементов в высоких степенях окисления (+3 и выше).
3°. По основности. Основность кислот — число ионов водорода, которые отщепляются от молекулы кислоты при ее диссоциации или обмениваются на катионы металла при взаимодействии кислоты с основанием или с металлом.
По основности кислоты делятся на одноосновные (HNO3 , HCl) двухосновные (H2SO4), трех- (H3PO4) и т. д.
Преимущественно в оксокислотах атомы водорода связаны с атомами кислорода, а не с центральным атомом аниона. Именно эти атомы водорода и отщепляются при диссоциации кислоты в водном растворе с образованием катионов гидроксония (H3O+) и принимают участие в реакции нейтрализации т. е. определяют основность кислоты. Для неорганических кислот, как правило, общее число атомов водорода в молекуле соответствует основности кислоты, но это не всегда так.
В некоторых кислотах есть атомы водорода связанные непосредственно с атомом кислотообразующего элемента, такие атомы водорода не обмениваются на ион металла, т. е. не определяют основность кислоты.
Для органических кислот общее число атомов водорода в молекуле, в подавляющем большинстве случаев, не соответствует основности кислоты. Основность органических кислот определяется числом карбоксильных групп в молекуле, например,
уксусная одноосновная кислота | щавелевая двухосновная кислота |
Многоосновные кислоты диссоциируют ступенчато и могут образовывать несколько рядов солей, например, серная кислота — кислота двухосновная, диссоциирует по двум ступеням:
H2SO4 « H+ + « 2H+ +
образует два ряда солей:
сульфаты ( ), например, Na2SO4 — сульфат натрия,
гидросульфаты ( ), например, NaHSO4 — гидросульфат натрия или кислый сульфат натрия.
4°. Сила кислот. Сила кислоты (как и любого другого электролита) определяется степенью диссоциации, a, которая равна отношению количества продиссоциировавших молекул к общему количеству молекул данного электролита в растворе, т. е. долю продиссоциировавших молекул, ее можно также выражать в процентах:
a = | ´ 100% |
Для характеристики силы электролитов применяют также константу диссоциации (константу равновесия реакции диссоциации):
HAn + H2O « H3O+ + An–
.
Так как концентрацию воды в водных растворах можно принять за постоянную величину, ее можно включить в константу равновесия:
= .
Величину Ka называют константой ионизации кислоты (индекс «а» — от английского acid — кислота), в числителе обычно указывают не концентрацию катионов гидроксония, а концентрацию ионов водорода.
Качественно силу кислот можно оценить по правилу Полинга: если представить формулу оксокислоты в общем виде — HnЭOm , то по разности (m – n) можно оценить силу кислоты: у какой кислоты она больше та кислота и сильнее:
m – n = 0 — кислота очень слабая, HClO
m – n = 1 — кислота слабая, HClO2
m – n = 2 — кислота сильная, HClO3
m – n = 3 — кислота очень сильная, HClO4.
Для многоосновных кислот для каждой ступени диссоциации можно записать свою константу ионизации, причем, как правило, каждая последующая константа меньше предыдущей на несколько порядков:
K1 >> K2 >> K3
(например, для фосфорной кислоты K1 = 7 × 10–3, K2 = 6 × 10–8,
K3 = 5, × 10–13).
Замена одного атома кислорода в оксокислоте на атом фтора ведет к резкому увеличению силы кислоты. Примером может служить фторсульфоновая кислота HSO3F. Такие кислоты получили название суперкислот. К этому же классу кислот относятся и кислоты с комплексным анионом, например HSbF6 .
5°. По устойчивости. Некоторые оксокислоты существуют только в водных разбавленных растворах и являются термически неустойчивыми. Получить их в индивидуальном виде невозможно, например H2CO3 , H2SO3 , HClO, HClO2 . В то же время есть устойчивые к нагреванию кислоты, например, серная H2SO4 (tкип. = 296,5°С).
6°. По растворимости. По растворимости кислоты делятся на растворимые, такие как HNO3 , H3PO4 , и нерастворимые в воде — SiO2 × x H2O, H2MoO4 .
7°. По соотношению воды и кислотного оксида. По этому признаку кислоты делятся на орто-, пиро-, мета-кислоты и кислоты переменного состава.
К орто-кислотам относятся кислоты, в которых отношение воды и кислотного оксида превышает 1. К таким кислотам относятся ортофосфорная H3PO4 [n(H2O) : n(P2O5) = 3 : 1].
В мета-кислотах это отношение равно 1, например, метафосфорная кислота HPO3 [n(H2O) : n(P2O5) = 1 : 1]. К этим же кислотам относятся азотная, серная и многие другие.
Пиро-кислоты получаются из орто-кислот в результате отщеплением воды при нагревании:
2H3PO4 H4P2O7 + H2O
или растворением кислотного оксида в кислоте:
H2SO4 + SO3 = H2S2O7.
Свои названия эти кислоты получили от греческого слова pyr — огонь.
В некоторых кислотах отношение воды и кислотного оксида зависит от способа получения, например, x SiO2 × y H2O; x TiO2 × y H2O. x SnO2 × y H2O. Чаще всего они встречаются в виде коллоидных растворов.
Способы получения кислот
1. Бескислородые кислоты могут быть получены:
а) взаимодействием простых веществ с водородом
H2 + Cl2 = 2HCl
при горении водорода в атмосфере хлора
H2 + S H2S,
б) при горении органических галогенсодержащих соединений
2 CH3Cl + 3 O2 ® 2 CO2 + 2 H2O + 2 HCl,
в) при реакции алканов с галогенами:
CH4 + Cl2 CH3Cl + HCl,
2. Кислородсодержащие кислоты чаще всего получают растворением кислотного оксида в воде (если кислота растворима в воде):
SO3 + H2O = H2SO4.
В случае, если кислота нерастворима в воде этот способ не применим, например:
SiO2 + H2O ¹
WO3 + H2O ¹.