Нормальный закон распределения результатов измерений

Многие ряды распределения, встречающиеся в статистических наблюдениях, можно охарактеризовать формулами разных математических функций. Функции или законы распределения случайных величин бывают: биноминальное, геометрическое, равномерное, нормальное и др. Самым важным в статистике является нормальное распределение.

Нормальное распределение – это совокупность объектов, в которой крайние значения некоторого признака – наименьшее и наибольшее – появляются редко; чем ближе значение признака к среднему значению, тем чаще оно встречается. Например, распределение студентов по их весу приближается к нормальному.

Нормальный закон (закон Гаусса) распределения результатов измерений непрерывных величин наиболее часто встречается и в спортивной практике.

Нормальное распределение описывается формулой, впервые предложенной английским математиком Муавром в 1733 году:

Нормальный закон распределения результатов измерений - student2.ru (1)

где p и e – математические константы (p = 3,141; e = 2,718); Нормальный закон распределения результатов измерений - student2.ru и s – соответственно, среднее арифметическое и среднее квадратическое отклонение результатов измерений; xi – результаты измерений; f(x) – так называемая функция плотности распределения.

Плотность распределения – это количество признака в единице интервала.

Формула (1) позволяет получить в виде графика кривую нормального распределения (рисунок 14), которая симметрична относительно центра группирования (как правило, это значение среднего арифметического Нормальный закон распределения результатов измерений - student2.ru ).

 
  Нормальный закон распределения результатов измерений - student2.ru

Рисунок 14 – Кривая нормального распределения

Эта кривая может быть получена из полигона распределения при бесконечно большом числе наблюдений и интервалов (см. рисунок 2).

Чтобы избежать неудобств, связанных с расчётами для каждого конкретного случая по достаточно сложной формуле (1), используют так называемое нормированное (или стандартное) нормальное распределение, для которого составлены подробные таблицы.

Нормированное нормальное распределение имеет параметры Нормальный закон распределения результатов измерений - student2.ru = 0 и σ = 1. Это распределение получается, если пронормировать нормально распределённую величину x по формуле:

Нормальный закон распределения результатов измерений - student2.ru .

Плотность распределения вероятностей нормированного нормального распределения записывается в виде:

Нормальный закон распределения результатов измерений - student2.ru .

На кривой нормированного нормального распределения (рисунок 15) указаны в процентах доли площадей, соответствующих отмеченным значениям нормированного отклонения u, по отношению к общей площади под кривой, равной 1 (100 %). Эти площади определяют вероятности попадания случайной величины в соответствующие интервалы.

Нормальный закон распределения результатов измерений - student2.ru

Рисунок 15 – Кривая нормированного распределения

25. Основные свойства кривой нормального распределения(рисунок 14)

1. Кривая симметрична относительно среднего арифметического (моды, медианы).

2. При x = Нормальный закон распределения результатов измерений - student2.ru Нормальный закон распределения результатов измерений - student2.ru .

3. При Нормальный закон распределения результатов измерений - student2.ru Нормальный закон распределения результатов измерений - student2.ru .

4. Площадь, заключенная между кривой f(x) и осью x, равна единице.

5. Кривая имеет две точки перегиба при Нормальный закон распределения результатов измерений - student2.ru .

26. Влияние Нормальный закон распределения результатов измерений - student2.ru и σ на вид кривой нормального распределения

1. Изменение среднего арифметического значения не меняет форму кривой, а приводит лишь к сдвигу кривой вдоль оси X: Нормальный закон распределения результатов измерений - student2.ru при s = const.

Нормальный закон распределения результатов измерений - student2.ru

Рисунок 16 – Влияние Нормальный закон распределения результатов измерений - student2.ru на вид кривой нормального распределения

2. С увеличением s максимальная ордината кривой убывает, а сама кривая становится более пологой, при уменьшении s кривая становится более островершинной. При любых значениях Нормальный закон распределения результатов измерений - student2.ru и s площадь, ограниченная кривой и осью X, одинакова и равна единице.

В результате спортивной тренировки средняя арифметическая Нормальный закон распределения результатов измерений - student2.ru должна улучшаться (в зависимости от вида спорта или увеличиваться, или уменьшаться), а стандартное отклонение s должно уменьшаться. С увеличением стабильности и устойчивости спортивных результатов, составляющих нормально распределенные выборки, кривая распределения становится более островершинной.

Нормальный закон распределения результатов измерений - student2.ru

Рисунок 17 – Влияние s на вид кривой нормального распределения

27. Вероятности попадания в области Нормальный закон распределения результатов измерений - student2.ru , Нормальный закон распределения результатов измерений - student2.ru , Нормальный закон распределения результатов измерений - student2.ru . Правило трёх сигм

Нормальный закон распределения результатов измерений - student2.ru

Рисунок 18 – Вероятность попадания результатов, составляющих нормально распределенную выборку, на заданный участок кривой:

68,27 % всех результатов попадает на участок от Нормальный закон распределения результатов измерений - student2.ru до Нормальный закон распределения результатов измерений - student2.ru ;

95,45 % всех результатов попадает на участок от Нормальный закон распределения результатов измерений - student2.ru до Нормальный закон распределения результатов измерений - student2.ru ;

99,73 % всех результатов попадает на участок от Нормальный закон распределения результатов измерений - student2.ru до Нормальный закон распределения результатов измерений - student2.ru

Правило трех сигм заключается в том, что практически все результаты, составляющие нормально распределенную выборку, находятся в пределах Нормальный закон распределения результатов измерений - student2.ru.

Это правило можно использовать при решении следующих важных задач:

1. Оценки нормальности распределения выборочных данных. Если результаты находятся примерно в пределах Нормальный закон распределения результатов измерений - student2.ru и в области среднего арифметического результаты встречаются чаще, а вправо и влево от него – реже, то можно предположить, что результаты распределены нормально.

2. Выявление ошибочно полученных результатов. Если отдельные результаты отклоняются от среднего арифметического значения на величины, значительно превосходящие 3s, нужно проверить правильность полученных величин. Часто такие «выскакивающие» результаты могут появиться в результате неисправности прибора, ошибки в измерении и расчетах.

3. Оценка величины s. Если размах варьирования R = Xmax – Xmin, разделить на 6, то мы получим грубо приближенное значение s.

Задавшись процентом попаданий P%, можно найти область
X ± u×s, где u – число сигм, согласно таблице 7:

Таблица 7 – Процентные точки нормированного нормального распределения

P% 99,9
U 1,64 1,96 2,58 3,29

Наши рекомендации