Геодезические координаты
На поверхности эллипсоида вращения положение точки определяется геодезическими координатами - геодезической широтой B и геодезической долготой L (рис.1.3).
Геодезическая широта точки - это угол, образованный нормалью к поверхности эллипсоида в этой точке и плоскостью экватора. Геодезическая долгота точки - это двугранный угол между плоскостью начального меридиана и плоскостью меридиана точки.
Плоскость геодезического меридиана проходит через точку A и малую полуось эллипсоида; в этой плоскости лежит нормаль к поверхности эллипсоида в точке A. Геодезическая параллель получается от пересечения поверхности эллипсоида плоскостью, проходящей через точку A и параллельной плоскости экватора.
Рис.1.3
Различие геодезических и астрономических координат точки A зависит от угла между отвесной линией данной точки и нормалью к поверхности эллипсоида в этой же точке. Этот угол называется уклонением отвесной линии; он обычно не превышает 5". В некоторых районах Земли, называемых аномальными, уклонение отвесной линии достигает нескольких десятков дуговых секунд. При геодезических работах невысокой точности астрономические и геодезические координаты не различают; их общее название - географические координаты - используется довольно часто.
Две координаты - широта и долгота - определяют положение точки на поверхности относимости (сферы или эллипсоида). Для определения положения точки в трехмерном пространстве нужно задать ее третью координату, которой в геодезии является высота. В нашей стране счет высот ведется от уровенной поверхности, соответствующей среднему уровню Балтийского моря; эта система высот называется Балтийской.
Прямоугольные координаты
Систему плоских прямоугольных координат образуют две взаимноперпендикулярные прямые линии, называемые осями координат; точка их пересечения называется началом или нулем системы координат. Ось абсцисс - OX, ось ординат - OY.
Существуют две системы прямоугольных координат: левая и правая. В геодезии чаще применяется левая система (рис.1.4-а). По ложение точки в прямоугольной системе однозначно определяется двумя координатами X и Y; координата X выражает расстояние точки от оси ОY, координата Y - расстояние от оси OY.
Рис.1.4-а
Значения координат бывают положительные (со знаком " + " ) и отрицательные (со знаком " - ") в зависимости от того, в какой четверти (квадранте) находится искомая точка (рис.1.4-a).
Полярные координаты
Систему полярных координат образует направленный прямой луч OX. Начало координат - точка O - называется полюсом системы, линия OX - полярной осью. Положение любой точки в полярной системе определяется двумя координатами: радиусом-вектором r (синоним полярное расстояние S) - расстоянием от полюса до точки, - и полярным углом β при точке O, образованным осью OX и радиусом вектором точки и отсчитываемым от оси OX по ходу часовой стрелки (рис.1.4-б).
Рис.1.4-б
Переход от прямоугольных координат к полярным и обратно для случая, когда начала обеих систем находятся в одной точке и оси OX у них совпадают (рис.1.4-в), выполняется по формулам : X = S * Cosβ, Y = S * Sinβ, tgβ = Y/X, .
Рис.1.4-в
Эти формулы получаются из решения ΔOBA по известным соотношениям между сторонами и углами прямоугольного треугольника.
Системы прямоугольных и полярных координат применяются в геодезии для определения положения точек на плоскости.
Метод проекции
Центральная проекция
Чтобы изобразить объемный предмет на плоском чертеже, применяют метод проекций. К простейшим проекциям относятся центральная и ортогональная проекции.
При центральной проекции (рис.1.5-а) проектирование выполняют линиями, исходящими из одной точки, которая называется центром проекции. Пусть требуется получить центральную проекцию четырехугольника ABCD на плоскость проекции P; центр проекции - точка S.
Проведем линии проектирования до пересечения с плоскостью проекции, получим точки a, b, c, d, являющиеся проекциями точек A, B, C, D. Плоскость проекции и объект могут располагаться по разные стороны от центра проекции; так при фотографировании центром проекции является оптический центр объектива, а плоскостью проекции - фотопластинка или фотопленка.
Рис.1.5-а