Автономные инверторы тока
Автономные инверторы тока (АИТ) служат для преобразования постоянного тока в переменный, регулируемый по частоте. АИТ находят широкое применение в электрических передачах переменного тока.
Инвертор тока – исторически первый тип автономного инвертора – характеризуется двумя отличительными энергетическими признаками. Во-первых, его входная цепь есть цепь со свойствами источника постоянного тока, а функция его вентилей сводится к периодическому переключению направления этого тока в выходной цепи. Значит, на выходе вентильного коммутатора будет переменный ток (или, иначе говоря, периодически переключаемый по направлению постоянный ток), т.е. цепь со свойствами источника переменного тока. Во-вторых, нагрузкой инвертора тока должна быть цепь со свойствами, близкими к источнику напряжения, т.е. с малым внутренним динамическим сопротивлением, допускающим протекание через него скачкообразно меняющегося тока. Практически это обеспечивается включением конденсатора на выход вентильного коммутатора, что позволяет подключить после него любую реальную нагрузку с индуктивностью, не допускающей скачков тока.
Прямоугольный характер тока на выходе вентильного комплекта инвертора тока обусловливает близкую к прямоугольной (точнее, трапецеидальной) форме выходного напряжения инвертора на низких частотах, когда время перезаряда коммутирующей емкости становится малым по сравнению с длительностью полупериода выходного напряжения. Это ограничивает нижнюю рабочую частоту инвертора тока с простым алгоритмом управления.
Автономные инверторы тока выполняют на полупроводниковых ключах, обладающих односторонней проводимостью, в качестве которых могут использоваться полностью управляемые ключи (транзисторы, запираемые тиристоры) и обычные тиристоры с дополнительными устройствами конденсаторной коммутации (на рис. 8.3 – Са, Сb, Сс).
Автономный инвертор тока на полностью управляемых ключах - тиристорах VS1 – VS6 (рис. 8.3) – при помощи сглаживающего реактора Ld подключают к источнику напряжения Е, к его выходам подсоединяют фазы нагрузки – асинхронного тягового двигателя (АД). На тепловозе напряжение Е можно получить, снимая напряжение тягового синхронного генератора СГ, выпрямленное выпрямителем ВУ. Система управления инвертором (МСУ) подает отпирающие импульсы на все тиристоры в определенной последовательности с частотой, определяемой задающим генератором по сигналу от автоматической системы регулирования (на рис. 8.3 не показана).
Рис. 8.3. Принципиальная схема автономного инвертора тока
на полностью управляемых тиристорах
Если тиристоры VS1 – VS6 периодически включать и выключать в соответствии с диаграммой, представленной на рис. 8.4, то ток в нагрузке при соединении фаз асинхронного тягового двигателя по схеме «звезда» будет иметь форму прямоугольных положительных импульсов попеременно положительной и отрицательной полярности длительностью 120°эл., с постоянной амплитудой Id. При этом тиристоры VS1 – VS6 выполняют функцию распределения тока Id по фазам нагрузки.
Отличительной особенностью автономного инвертора тока является возможность двустороннего обмена энергией между питающей его сетью и двигателем с нереверсивным выпрямителем ВУ за счет изменения направления противо-эдс инвертора и сохранения направления в нем выпрямленного тока.
Качество выходного напряжения инвертора тока можно значительно улучшить, если применить на низких выходных частотах широтно-импульсный способ формирования кривой выходного токавентильного комплекта инвертора.
Рис. 8.4. Диаграмма тока на выходе автономного инвертора тока
Улучшение формы выходного тока инвертора достигается формированием каждого полупериода тока в виде последовательности импульсов тока, длительность которых изменяется по трапецеидальному закону (рис. 8.5).
Такой алгоритм управления просто реализуется с учетом особенности трехфазного инвертора тока – наличия включенными в любой момент времени одного вентиля катодной группы моста инвертора и одного вентиля анодной группы. Конденсаторы С на выходе инвертора выполняют функцию «энергетического буфера» между импульсами источника тока, каким по выходу является инвертор тока, и нагрузкой, как правило, содержащей последовательный реактанс индуктивного характера (асинхронных тяговых двигателей), не допускающий скачков тока в них.
Рис. 8.5. Диаграмма напряжения и тока
на выходе автономного инвертора тока
Таким образом,автономные инверторы тока, имеют следующие свойства:
- существенную зависимость величины и формы выходного напряжения от величины и характера нагрузки в классическом варианте инвертора. Ограничение на минимум нагрузки диктуется допустимой степенью возрастания напряжения на выходе инвертора. Ограничения на максимум нагрузки обусловлены требованием восстановления управляющих свойств тиристоров. Влияние изменения частоты выходного напряжения на его величину такое же, как влияние изменения нагрузки;
- большую величину индуктивности реактора в звене постоянного тока для реализации режима источника тока, что ухудшает массогабаритные показатели инвертора тока. Пульсация амплитуды импульсов тока инвертора обусловлена конечным значением индуктивности реактора Ldна выходе инвертора, подключенного к трехфазному мостовому выпрямителю;
- большую инерционность регулирования выходного напряжения за счет регулирования входного напряжения инвертора из-за большой электромагнитной постоянной времени реактора в звене постоянного тока;
- возможность улучшения гармонического состава выходного напряжения инвертора прежде всего при низких частотах методом широтно-импульсного формирования токов вентилей, особенно при использовании алгоритмов векторной широтно-импульсной модуляции тока по синусоидальному закону;
- благоприятный с позиций электромагнитной совместимости режим нагрузки источника входного напряжения постоянным током со входа инвертора тока.