Измерение тока и напряжения цепи постоянного тока и цепей однофазного переменного тока

Цель работы:

- изучить основные методы измерения тока;

-научиться выполнять замеры тока в различных цепях;

-научиться рассчитывать погрешности измерений.

Измерение тока и напряжения осуществляется в цепях постоянного, переменного токов широкого диапазона частот и импульсных.

Наиболее высокую точность измерений получают в цепях постоянного тока. При измерениях в цепях переменного тока точность измерений снижается с повышением частоты; здесь кроме оценки среднеквадратичного, средневыпрямленного, среднего и максимального значений требуется наблюдение формы исследуемого сигнала и знание мгновенных значений тока и напряжения.

Измерители тока и напряжения независимо от их назначения должны при включении не нарушать режима работы цепи измеряемого объекта; обеспечивать малую погрешность измерений, исключив при этом влияние внешних факторов на работу прибора, высокую чувствительность измерения на оптимальном пределе, быструю готовность к работе и высокую надежность.

Выбор приборов, выполняющих измерения тока и напряжения, определяется совокупностью многих факторов, важнейшие из которых: род измеряемого тока, примерный диапазон; форма кривой измеряемого тока (напряжения); мощность цепи, в которой осуществляется измерение; мощность потребления прибора; возможная погрешность измерения.

Если необходимая точность измерения, допустимая мощность потребления и другие требования могут быть обеспечены амперметрами и вольтметрами электромеханической группы, то следует предпочесть этот простой метод непосредственного отсчета. В маломощных цепях постоянного и переменного токов для измерения напряжения и тока обычно пользуются цифровыми и аналоговыми электронными вольтметрами. Если необходимо измерить напряжения с более высокой точностью, следует использовать приборы, действие которых основано на методах сравнения, в частности, на методе противопоставления.

Методы измерения напряжения в цепях постоянного тока

I.Метод непосредственной оценки.

При использовании метода непосредственной оценки вольтметр подключается параллельно тому участку цепи, на котором необходимо измерить напряжение.

Для уменьшения методической погрешности измерения напряжения мощность потребления вольтметра должна быть мала, а его внутреннее сопротивление велико (R0→ ∞).

Измерение напряжения в цепях постоянного тока может быть выполнено любым измерителем напряжения, работающем на постоянном токе (магнитоэлектрическим, электродинамическим, электростатическим, электромагнитным, аналоговым или цифровым электронным вольтметром). Выбор измерителя напряжения обусловлен мощностью измерения и необходимой точностью. Диапазон измеряемых напряжений лежит в пределах от микровольт до десятка киловольт. Если объект измерения мощный, используются электромеханические вольтметры и мощность потребления ими не учитывается, если же объект измерения маломощный, то мощность потребления должна быть учтена, либо используются электронные вольтметры.

II. Методы сравнения.

Компенсационный метод (метод противопоставления) измерениязаключается в уравновешивании, осуществляемом включением на индикатор равновесия либо двух электрически не связанных между собой, но противоположно направленных напряжений или ЭДС, либо двух раздельно регулируемых токов. Компенсационный метод используют для непосредственного сравнения напряжений или ЭДС, тока и косвенно для измерения других электрических, а также неэлектрических величин, преобразуемых в электрические.

Компенсационный метод измерения обеспечивает высокую точность измерения.

Устройства, служащие для выполнения измерений компенсационным методом, называют потенциометрами или компенсаторами. В практических схемах компенсаторов для обеспечения необходимой точности измерений ток I в рабочей цепи определяют не амперметром непосредственной оценки, а компенсационным методом с помощью эталона ЭДС нормального элемента. Нормальные элементы обеспечивают постоянную во времени ЭДС, равную 1,01865 В при температуре 20ºС, внутреннее сопротивление 500 - 1000 Ом, ток перегрузки 1 мкА. С изменением температуры окружающей среды значение ЭДС уменьшается по следующему закону:

Еt20-0,00004(t-20)-0,000001(t-20)2, (1)

где Et-ЭДС при температуре t, E20-ЭДС при 20ºС.

В зависимости от значения сопротивления рабочей цепи различают компенсаторы постоянного тока большого сопротивления (высокоомные 10-40 кОм, ток рабочей цепи 10-3-10-4 А, порядок измеряемого напряжения 1 - 2,5 В, погрешность измерения 0,02% от измеряемой величины) и малого сопротивления (низкоомные 10-1000 Ом; ток рабочей цепи 10-1-10-3 А, порядок измеряемого напряжения до 100 мВ, погрешность измерения 0,5% от измеряемого значения).

Схемные решения и конструкции компенсаторов постоянного тока могут быть различны.

При измерении ЭДС источников с большим внутренним сопротивлением или напряжений, действующих в высокоомных цепях, входное сопротивление магнитоэлектрических и электронных вольтметров может быть недостаточно большим, поэтому целесообразно использовать дифференциальный или компенсационный метод.

Дифференциальный метод основан на измерении разности между измеряемым и образцовым напряжением при их неполной компенсации. Схема измерения представлена на рисунке 5. Высокоомный вольтметр V1 c чувствительным пределом служит для измерения разностного напряжения между измеряемым UX и образцовым UKнапряжениями. Магнитоэлектрический аналоговый или цифровой вольтметр V2 используется для измерения образцового напряжения UK. Рекомендуется при UK=0 измерить вольтметром V1 ориентировочное значение UX, а уже затем установить по вольтметру V2 удобное для отсчета напряжение UK. Измеряемое напряжение UХ при указанной полярности вольтметра V1 определяется как UХ=UK+ΔU.

Дифференциальный метод обеспечивает высокую точность измерения напряжения. Погрешность измерения определяется в основном погрешностью вольтметра, измеряющего UK.

Входное сопротивление цепи

RВХ= UX/I=(UK+ΔU)/( ΔU/Rv1)=Rv1(UK/ΔU+1) (3)

и намного превышает входное сопротивление Rv1 вольтметра V1.

Измерение постоянного тока

Диапазон значений постоянных токов, с измерением которых приходится встречаться в различных областях техники, чрезвычайно велик (от токов 10-7А до десятков и сотен тысяч ампер). Поэтому методы и средства измерения их различны.

Измерение постоянного тока может быть выполнено любым измерителем постоянного тока: магнитоэлектрическими, электродинамическими, аналоговыми и цифровыми электронными амперметрами. При необходимости измерения весьма малых токов, значительно меньших полного отклонения IИ магнитоэлектрического измерителя, последний применяют совместно с усилителем постоянного тока. Усиления тока можно добиться при включении биполярных транзисторов по схеме с общим эмиттером, которая обеспечивает малое входное сопротивление усилителя.

Наши рекомендации