Момент импульса и закон его сохранения
Моментом импульса материальной точки относительно произвольной точки Оназывается физическая величина, определяемая векторным произведением радиус-вектора этой материальной точки, проведенного из точки О, на величину ее импульса :
,
где - масса материальной точки; – ее скорость при поступательном движении или линейная скорость ее при вращательном движении.
Вектор направлен так же, как и вектор угловой скорости , т.е. вдоль оси вращения, согласно правилу правого винта (рис. 4.4).
Если твердое тело, вращающееся вокруг некоторой неподвижной оси z, представить в виде совокупности элементарных масс, и спроектировать моменты импульсов всех этих элементарных масс на это направление, получим момент импульса тела относительно этой оси ( – скалярная величина).
Суммирование производим по всем элементарным массам (имеющим линейную скорость и радиус вращения ), на которые разбивается тело. Так как , где ω - угловая скорость вращения тела, а - момент инерции тела относительно данной оси, тогда момент импульса тела относительно оси z равен
,
т.е.
. (4.2)
В случае тела, вращающегося вокруг оси симметрии, векторы
и имеют одинаковое направление и тогда
.
Продифференцируем выражение (4.2) по времени:
,
в итоге
. (4.3)
Таким образом, производная по времени от момента импульса твердого тела относительно оси вращения равна моменту сил относительно той же оси.
Выражения (4.2) и (4.3) – еще две формы основного уравнения динамики вращательного движения твердого тела относительно неподвижной оси z.
Можно показать, что имеет место векторное равенство:
. (4.4)
Из уравнения (4.4) видно, что если момент внешних сил, действующих на тело, равен нулю, то момент импульса тела остается постоянным.
Если , то
(4.5)
Выражение (4.5) представляет собой закон сохранения момента импульса.
Для замкнутой системы тел закон сохранения момента импульсаформулируется так: момент импульса замкнутой системы тел не меняется со временем, причем это утверждение справедливо для момента импульса, взятого относительно любой точки инерциальной системы отсчета. Этот закон выполняется только в инерциальных системах отсчета.
Закон сохранения момента импульса – фундаментальный закон природы. Он связан со свойством симметрии пространства – его
изотропностью, т.е. с инвариантностью физических законов относительно поворота замкнутой системы в пространстве на любой угол.
Свободные оси. Гироскопы
Для того чтобы сохранить положение оси вращения твердого тела с течением времени неизменным, используют подшипники, в которых она удерживается. Но существуют такие оси вращения тел, которые не изменяют своей ориентации в пространстве без действия на нее внешних сил. Эти оси называются свободными осями (или осями свободного вращения). Можно показать, что в любом теле существуют три взаимно перпендикулярные оси, проходящие через центр масс тела, которые могут служить свободными осями – они называются главными осями инерции тела.
Например, главные оси инерции однородного прямоугольного параллелепипеда проходят через центры противоположных граней; главными осями инерции шара являются любые три взаимно перпендикулярные оси, проходящие через центр масс.
Свойство свободных осей сохранять свое положение в пространстве широко применяется в технике. Наиболее интересны в этом отношении гироскопы – массивные однородные тела, вращающиеся с большой угловой скоростью около своей оси симметрии, являющейся свободной осью. Гироскопы применяют в различных гироскопических навигационных приборах (гирокомпас, гирогоризонт и т.д.), а также в различных автопилотах.
4.6. Сопоставление формул кинематики и динамики
поступательного и вращательного движений
На рис.4.5 представлены направления векторов линейной
скорости , угловой скорости и псевдовектора угла поворота при вращательном движении.
На рис.4.6 представлены направления векторов линейной
скорости , тангенциального , нормального и полного ускорений в случае равноускоренного (см. рис.4.6,а) и равнозамедленного (см. рис.4.6,б) вращательных движений.
а) б)
Рис.4.6. Связь между векторами и
В табл.3 и 4 приведено сопоставление формул кинематики и динамики поступательного и вращательного движений.
Таблица 3
Сопоставление формул кинематики
поступательного и вращательного движений
Поступательное движение | Вращательное движение |
перемещение путь линейная скорость - ускорение равноускоренное ( ) равнопеременное ( ) . | угол поворота угловая скорость - угловое ускорение равноускоренное ( ) равнопеременное ( ) |
Связь линейной и угловой скорости или Связь тангенциального и углового ускорений |
Таблица 4
Сопоставление формул кинематики
поступательного и вращательного движений
Поступательное движение | Вращательное движение |
Инертные свойства - масса - сила | Инертные свойства – момент инерции - момент силы, , Момент силы направлен вдоль оси вращения по правилу правого винта (см . рис. ниже) |
Продолжение табл.4
Поступательное движение | Вращательное движение |
Основное уравнение динамики поступательного движения Импульс - производная импульса определяет действующую силу | Основное уравнение динамики вращательного движения Момент импульса , т.е. или Уравнение моментов (производная момента импульса определяет вращающий момент силы) |
Окончание табл.4
Поступательное движение | Вращательное движение |
Кинетическая энергия при поступательном движении | Кинетическая энергия при вращательном движении Плоское движение (тело катится) |
Работа при поступательном движении | Работа при вращательном движении |
Контрольные вопросы
1. Дайте определения материальной точки и абсолютно твердого тела.
2. Что такое система отсчета?
3. Сопоставьте перемещение и путь.
4. Какое движение называется поступательным, вращательным?
5. Дайте определения векторов средней скорости и среднего ускорения, мгновенной скорости и мгновенного ускорения.
6. Что характеризует тангенциальная составляющая ускорения, нормальная составляющая ускорения? Каковы их модули?
7. Что называется угловой скоростью, угловым ускорением? Как определяются их направления?
8. Какова связь между линейными и угловыми кинематическими величинами?
9. Сформулируйте первый закон Ньютона и понятие инерциальной системы отсчета.
10. Что такое сила? Как её можно охарактеризовать?
11. В чем заключается принцип независимости действия сил?
12. Сформулируйте принцип относительности Галилея. Запишите преобразования Галилея и классический закон сложения скоростей.
13. Сформулируйте второй закон Ньютона и запишите основное уравнение динамики материальной точки.
14. Что такое импульс материальной точки, импульс силы?
15. Сформулируйте третий закон Ньютона.
16. Что называется механической системой? Какие системы являются замкнутыми?
17. В чем заключается закон сохранения импульса? В каких системах он выполняется?
18. Что называется центром масс системы материальных точек? Как движется центр масс замкнутой системы?
19. Назовите и охарактеризуйте основные виды сил в механике.
20. Что такое энергия и работа? В чем различие между ними?
21. Как найти работу переменной силы?
22. Какие силы называют консервативными, диссипативными?
23. Дайте определения известных вам видов механической энергии.
24. Какова связь между консервативной силой и потенциальной энергией?
25. В чем заключается закон сохранения механической энергии? Для каких систем он выполняется?
26. Чем отличается абсолютно упругий удар от абсолютно неупругого?
27. Как определить скорости тел после центрального абсолютно упругого удара? Следствием каких законов являются эти выражения?
28. Что такое момент инерции тела? Какова роль момента инерции при вращательном движении?
29. Сформулируйте и поясните теорему Штейнера.
30. Какова формула для кинетической энергии тела, вращающегося вокруг неподвижной оси?
31. Что называют моментом силы относительно неподвижной точки, относительно неподвижной оси? Как определить направление вектора момента силы?
32. Сформулируйте уравнение динамики вращательного движения твердого тела.
33. Что называют моментом импульса материальной точки, твердого тела? Как определить направление вектора момента импульса?
34. Сформулируйте закон сохранения момента импульса. В каких системах он выполняется?
35. Что такое свободные оси (главные оси инерции)?
Литература
1. Трофимова Т.И. Курс физики. / Т.И.Трофимова. - М.: Высшая школа, 2001.
2. Савельев И.В. Курс общей физики. Механика. Молекулярная физика. / И.В.Савельев. – СПб.: Лань, 2006.
3. Сивухин Д.В. Общий курс физики. Механика. / Д.В.Сивухин - М.: Физматлит, 2005.
4. Детлаф А.А. Курс физики. / А.А.Детлаф, Б.М.Яворский. - М.: Высшая школа, 2001.
5. Федосеев В.Б. Физика: учебник. / В.Б.Федосеев. – Ростов н/Д: Феникс, 2009.
Оглавление
Предисловие………………………………………………………………………….. | ||||
1. | КИНЕМАТИКА…………………………………………………………………… | |||
1.1. | Основные понятия кинематики…………………………………. | |||
1.2. | Скорость………………………………………………………………….. | |||
1.3. | Неравномерное движение. Ускорение………………………. | |||
1.4. | Кинематические уравнения………………………………………. | |||
1.4.1. | Равномерное прямолинейное движение……………… | |||
1.4.2. | Равнопеременное движение………………………………. | |||
1.5. | Кинематика вращательного движения………………………. | |||
1.6. | Связь между линейными и угловыми величинами……… | |||
2. | ДИНАМИКА МАТЕРИАЛЬНОЙ ТОЧКИ И ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА……………………………………………. | |||
2.1. | Первый закон Ньютона. Инерциальные системы отсчета……………………………………………………………………….. | |||
2.2. | Сила и масса. Второй и третий законы Ньютона……….. | |||
2.3. | Закон сохранения импульса. Центр масс системы……… | |||
2.4. | Силы в механике………………………………………………………. | |||
2.4.1. | Закон всемирного тяготения. Сила тяжести………… | |||
2.4.2. | Силы трения………………………………………………………. | |||
2.4.3. | Силы упругости…………………………………………………. | |||
3. | РАБОТА И ЭНЕРГИЯ………………………………………………………….. | |||
3.1. | Работа. Мощность. Механическая энергия………………… | |||
3.2. | Консервативные и диссипативные силы……………………. | |||
3.3. | Кинетическая и потенциальная энергия……………………. | |||
3.4. | Закон сохранения энергии……………………………………….. | |||
3.5. | Применение законов сохранения энергии и импульса к соударению абсолютно упругих и неупругих тел……. | |||
4. | ОСНОВЫ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА………………………………………………………………………. | ||
4.1. | Момент инерции………………………………………………………. | ||
4.2. | Кинетическая энергия вращающегося твердого тела… | ||
4.3. | Момент силы. Уравнение динамики вращательного движения твердого тела………………………………………….. | ||
4.4. | Момент импульса и закон его сохранения…………………. | ||
4.5. | Свободные оси. Гироскопы……………………………………….. | ||
4.6. | Сопоставление формул кинематики и динамики поступательного и вращательного движений…………… | ||
Контрольные вопросы…………………………………………………………….. | |||
Литература…………………………………………………………………………….. | |||
Кунаков В.С., Максимов С.М.,
Пруцакова Н.В., Шполянский А.Я.
ОСНОВЫ МЕХАНИКИ
(кинематика и динамика материальной точки