Распространение и отражение звука

Звук распространяется от звучащего тела равномерно во все стороны, если на его пути нет никаких препятствий. Но не всякое препятствие может ограничить его распространение. От звука нельзя загородиться небольшим листом картона, как от пучка света. Звуковые волны, как и всякие волны, способны огибать препятствия, «не замечать» их, если их размеры меньше, чем длина волны. Длина слышимых в воздухе звуковых волн колеблется от 15 м до 0,015 м. Если у препятствий на их пути меньшие размеры (например, у древесных стволов в редколесье), то волны их просто огибают. Препятствие же больших размеров (стена дома, скала) отражает звуковые волны по тому же закону, что и световые: угол падения равен углу отражения. Эхо — это отражение звука от препятствий.

Своеобразно переходит звук из одной среды в другую. Явление это довольно сложное, но оно подчиняется общему правилу: звук не переходит из одной среды в другую, если их плотности резко отличны, например, из воды в воздух. Достигая границы этих сред, он почти полностью отражается. Очень незначительная часть его энергии уходит на вибрацию поверхностных слоев другой среды. Погрузив голову под самую поверхность реки, вы еще услышите громкие звуки, на глубине же в 1 м уже ничего не услышите. Рыбы не слышат звук, раздающийся над поверхностью моря, но звук от тела, вибрирующего в воде, они слышат хорошо.

Через тонкие стенки звук слышен потому, что он заставляет их колебаться, и они как бы воспроизводят звук уже в другой комнате. Хорошие звукоизоляционные материалы — вата, ворсистые ковры, стены из пенобетона или пористой сухой штукатурки — как раз тем и отличаются, что в них очень много поверхностей раздела между воздухом и твердым телом. Проходя через каждую из таких поверхностей, звук многократно отражается. Но, кроме того, и сама среда, в которой звук распространяется, поглощает его. Один и тот же звук слышен лучше и дальше в чистом воздухе, чем в тумане, где его поглощают поверхности раздела между воздухом и капельками воды.

По-разному поглощаются в воздухе звуковые волны различной частоты. Сильнее — звуки высокие, меньше — низкие, такие, например, как бас. Именно поэтому пароходный гудок издает такой низкий звук (частота его не более 50 гц): низкий звук слышен на большем расстоянии. Большой колокол в Московском Кремле, когда он еще висел на колокольне «Иван Великий», был слышен за 30 верст — он гудел тоном примерно в 30 гц (фа субоктавы). Еще меньше поглощаются инфразвуки, особенно в воде. Рыбы слышат их за десятки и сотни километров. А вот ультразвук поглощается очень быстро: ультразвук с частотой в 1 Мгц ослабляется в воздухе вдвое на расстоянии 2 см, тогда как звук в 10 кгц ослабляется вдвое на 2200 м.

Энергия звуковой волны

Хаотическое движение частиц вещества (в том числе и молекул воздуха) называют тепловым. Когда в воздухе распространяется звуковая волна, его частицы приобретают, кроме теплового, еще и дополнительное движение — колебательное. Энергию для такого движения дает частицам воздуха вибрирующее тело (источник звука); пока оно колеблется, энергия беспрерывно передается от него в окружающий воздух. Чем дальше пройдет звуковая волна, тем слабее она становится, тем меньше в ней энергии. То же самое происходит со звуковой волной и в любой другой упругой среде — в жидкости, в металле.

Звук распространяется равномерно во все стороны, и в каждый момент слои сжатого воздуха, возникшие от одного импульса, образуют как бы поверхность шара, в центре которого находится звучащее тело. Радиус и поверхность такого «шара» беспрерывно растут. Одно и то же количество энергии приходится на все большую и большую поверхность «шара». Поверхность шара пропорциональна квадрату радиуса, поэтому количество энергии звуковой волны, проходящей, допустим, через квадратный метр поверхности, обратно пропорционально квадрату расстояния от звучащего тела. Следовательно, на расстоянии звук становится слабее. Русский ученый Н. А. Умов ввел в науку понятие поток плотности энергии. Величиной потока энергии удобно измерять и силу (интенсивность) звука. Поток плотности энергии в звуковой волне — это количество энергии, которое проходит за секунду через единицу поверхности, перпендикулярной направлению волны. Чем больше поток плотности энергии, тем больше сила звука. Измеряется поток энергии в ваттах на квадратный метр (вт/м²).

Наши рекомендации