Что такое звукоизоляция и акустика. Акустический комфорт помещения. Механизм передачи звука - распространение звука в различных средах.

Распространение звука.

Для распространения звука необходима упругая среда. В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха мы обнаружим, что звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Звук в газах. Известно, что во время грозы мы сначала видим вспышку молнии и лишь через некоторое время слышим раскаты грома (рис. 52). Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии.
Что такое звукоизоляция и акустика. Акустический комфорт помещения. Механизм передачи звука - распространение звука в различных средах. - student2.ru Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре 20 °С она равна 343 м/с, т.е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из пулемета Калашникова (ПК). Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 331 м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

Звук в жидкостях. Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в воде впервые была измерена в 1826 г. Ж- Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии (рис. 53). На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук этого колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре 8 °С она оказалась равной примерно 1440 м/с.
Что такое звукоизоляция и акустика. Акустический комфорт помещения. Механизм передачи звука - распространение звука в различных средах. - student2.ru

На границе между двумя разными средами часть звуковой волны отражается, а часть проходит дальше. При переходе звука из воздуха в воду 99,9 % звуковой энергии отражается назад, однако давление в прошедшей в воду звуковой волне оказывается почти в 2 раза больше. Слуховой аппарат рыб реагирует именно на это. Поэтому, например, крики и шумы над поверхностью воды являются верным способом распугать морских обитателей. Человека же, оказавшегося под водой, эти крики не оглушат: при погружении в воду в его ушах останутся воздушные "пробки", которые и спасут его от звуковой перегрузки.

При переходе звука из воды в воздух снова отражается 99,9 % энергии. Но если при переходе из воздуха в воду звуковое давление увеличивалось, то теперь оно, наоборот, резко уменьшается. Именно по этой причине, например, не доходит до человека в воздухе звук, возникающий под водой при ударе одним камнем о другой.

Такое поведение звука на границе между водой и воздухом дало основание нашим предкам считать подводный мир "миром молчания". Отсюда же и выражение: "Нем как рыба". Однако еще Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Воспользовавшись таким способом, можно убедиться, что рыбы на самом деле довольно болтливы.

Звук в твердых телах. Скорость звука в твердых телах больше, чем в жидкостях и газах. Если вы приложите ухо к рельсу, то после удара по другому концу рельса вы услышите два звука. Один из них достигнет вашего уха по рельсу, другой - по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали "слухачей", которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

РАЗДЕЛ СВЕТОТЕХНИКИ. ЖЕСТЬ.

Что такое звукоизоляция и акустика. Акустический комфорт помещения. Механизм передачи звука - распространение звука в различных средах.

Звукоизоляция — снижение уровня шума, проникающего в помещения извне. Количественная мера звукоизоляции ограждающих конструкций выражается в децибелах. Степень необходимости звукоизоляции перекрытий зависит от характеристик используемых в строительстве материалов и соблюдения всех технологических норм. К примеру, в случае сооружения перекрытий из качественных заводских бетонных плит при тщательном и аккуратном их монтаже звукоизоляция может не потребоваться на протяжении нескольких лет.

Акустика (от греч. (аку́о) — слышу) — наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.

Одно из направлений повышения качества жилья – это акустический комфорт. Чтобы создать помещение, в котором звучание будет самого высокого качества, нужно использовать приемы, основанные на знании правил архитектурно-строительной акустики, на практическом положительном опыте в этой сфере. Правила эти основаны на изучении законов распространения звуковых волн в закрытом помещении, на законах отражения и поглощения звука различными видами поверхности, поскольку отраженные волны в огромной степени влияют на качество звучания музыки и речи. Также немаловажное значение имеет конкретный выбор материалов, предполагаемых к использованию в каждом конкретном случае.

Акустический комфорт помещения складывается из трех составляющих:

высокая разборчивость речевого звучания;

минимальный шумовой фон;

достаточная степень звукоизоляции.

Задача проектировщиков и строителей вполне конкретная: провести такой расчет акустики, чтобы полезные звуки подчеркивались и акцентировались, а посторонние, нежелательные, устранялись до уровня, не нарушающего комфорт восприятия.

[Далее надо просто очень много прочитать

и понять суть, я не смогла сократить это]

Практика показывает, что для современных условий индекс изоляции воздушного шума для межэтажных перекрытий и стен между квартирами должен быть не менее Rw=62 дБ (на 8 дБ выше самых строгих норм). Только при таком показателе звукоизоляции можно реально говорить об акустическом комфорте. Однако даже перекрытие с индексом 62 дБ не сможет обеспечить полной тишины в помещении спальной комнаты, если, к примеру, сосед сверху поздним вечером решил посмотреть в своем кинотеатре новый боевик. При этом индекс изоляции воздушного шума для межкомнатных стен, по нашему мнению, должен быть не менее Rw=52 дБ, что также на 5 дБ выше самых жестких для этого случая норм СНиП.

Поэтому если звукоизоляции существующих ограждающих конструкций недостаточно, ее увеличивают при помощи дополнительных конструкций. Повышение звукоизоляции путем увеличения массы конструкции считается малоэффективным мероприятием. Действительно, увеличение толщины кирпичной стены (с полкирпича до целого) приводит к повышению индекса Rw не более чем на 6 дБ. При этом в два раза возрастает нагрузка на перекрытие, а толщина дополнительной конструкции составляет 120 мм.

Основные принципы эффективной дополнительной звукоизоляции известны уже очень давно - должны применяться легкие многослойные облицовки с чередованием звукопоглощающих и звукоотражающих слоев. Звуковая волна, поочередно преодолевая слои, поглощается, отражается в обратном направлении, снова поглощается и, тем самым, затухает. Благодаря этому звукоизолирующая сgособность конструкции существенно возрастает. Однако вся сложность состоит в практической реализации таких конструкций. Практика показывает, что для современных условий индекс изоляции воздушного шума для межэтажных перекрытий и стен между квартирами должен быть не менее Rw=62 дБ (на 8 дБ выше самых строгих норм). Только при таком показателе звукоизоляции можно реально говорить об акустическом комфорте. Однако даже перекрытие с индексом 62 дБ не сможет обеспечить полной тишины в помещении спальной комнаты, если, к примеру, сосед сверху поздним вечером решил посмотреть в своем кинотеатре новый боевик. При этом индекс изоляции воздушного шума для межкомнатных стен, по нашему мнению, должен быть не менее Rw=52 дБ, что также на 5 дБ выше самых жестких для этого случая норм СНиП.

Поэтому если звукоизоляции существующих ограждающих конструкций недостаточно, ее увеличивают при помощи дополнительных конструкций. Повышение звукоизоляции путем увеличения массы конструкции считается малоэффективным мероприятием. Действительно, увеличение толщины кирпичной стены (с полкирпича до целого) приводит к повышению индекса Rw не более чем на 6 дБ. При этом в два раза возрастает нагрузка на перекрытие, а толщина дополнительной конструкции составляет 120 мм.

Основные принципы эффективной дополнительной звукоизоляции известны уже очень давно - должны применяться легкие многослойные облицовки с чередованием звукопоглощающих и звукоотражающих слоев. Звуковая волна, поочередно преодолевая слои, поглощается, отражается в обратном направлении, снова поглощается и, тем самым, затухает. Благодаря этому звукоизолирующая способность конструкции существенно возрастает. Однако вся сложность состоит в практической реализации таких конструкций.

Для традиционных каркасно-обшивных облицовок наличие жестких связей (звуковых мостиков) между стеной (перекрытием) и каркасом облицовки существенно ограничивает их звукоизолирующую способность, несмотря на наличие внутри эффективного звукопоглотителя, а также нескольких листов обшивки. Через звуковые мостики вибрации практически без потерь передаются на финишные листы облицовки и благополучно переизлучаются ими в защищаемое помещение. В таком случае из потенциально возможных 10-15 дБ дополнительной звукоизоляции по факту остается от 2 до 6 дБ при общей толщине конструкции более 100 мм. Однако есть мощная сила, по сей день "лоббирующая" выполнение таких конструкций. Это строители-отделочники, которые, руководствуясь желанием сделать все как можно прочнее и надежнее, исключают из конструкций даже штатные упругие прокладки (типа ленты "Дихтунгсбанд" производства концерна "Кнауф"), не говоря уже о более сложных в монтаже упругих элементах.

В данных условиях достаточно удачной оказалась попытка создать конструкцию дополнительной звукоизоляции, полностью готовую к применению. Речь идет о панельной системе ЗИПС, выпускаемой с 1999 года в различных модификациях. В данной системе технологически решены основные проблемы недостаточной звукоизоляции широко распространенных каркасно-обшивных облицовок: отсутствует каркас, панели монтируются к защищаемой поверхности только через виброизолированные узлы креплений. К боковым стенам и перекрытию торцы панелей примыкают через упругие прокладки. Благодаря этому панельная система "ЗИПС-Вектор" толщиной 53 мм (рис. 6) имеет индекс дополнительной изоляции воздушного шума ARw = 9-11 дБ, а модель "ЗИПС-Модуль" толщиной 83 мм (рис. 7) - ARw= 12-14 дБ.

При этом задача увеличения звукоизоляции широко распространенных каркасно-обшивных облицовок путем незначительного дополнения их конструкции по-прежнему является крайне актуальной. Для повышения звукоизолирующей способности таких облицовок принципиальное значение имеет устройство узлов крепления каркаса к защищаемой поверхности. Новое разработанное и апробированное решение представляет собой подвес-крепление "Виброфлекс", представляющий собой металлическую обойму с рабочим прокладочным элементом, выполненным из специального эластомера Sylomer. Рабочая резонансная частота подвесов "Виброфлекс" находится в диапазоне 9-18 Гц, что обеспечивает высокий уровень звуко/виброизоляции конструкций, начиная с частоты 50 Гц.

Что такое звукоизоляция и акустика. Акустический комфорт помещения. Механизм передачи звука - распространение звука в различных средах. - student2.ru Необходимо отметить, что звукоизоляционный подвесной потолок примыкает к стенам, колоннам, а также любым другим вертикальным поверхностям только через упругие прокладки из материала "Вибростек" без применения саморезов. Это второе отличие от стандартной технологии монтажа, когда каркас подвесного потолка или облицовки по периметру закрепляется к стенам. После монтажа данные стыки заполняются виброакустическим герметикой "Вибросил". Тем самым решается вопрос минимизации прохождения звуковых вибраций от стен на финишную поверхность звукоизолирующей конструкции. Применение специализированного герметика с низким модулем упругости позволяет решить данную задачу с минимальными потерями.

Подвесной звукоизолирующий потолок толщиной 150 мм на подвесах "Виброфлекс", показанный на рис. 9, увеличивает индекс изоляции воздушного шума перекрытием на ARw= 16-18 дБ.

Распространение звука.

Для распространения звука необходима упругая среда. В вакууме звуковые волны распространяться не могут, так как там нечему колебаться. В этом можно убедиться на простом опыте. Если поместить под стеклянный колокол электрический звонок, то по мере выкачивания из-под колокола воздуха мы обнаружим, что звук от звонка будет становиться все слабее и слабее, пока не прекратится совсем.

Звук в газах. Известно, что во время грозы мы сначала видим вспышку молнии и лишь через некоторое время слышим раскаты грома (рис. 52). Это запаздывание возникает из-за того, что скорость звука в воздухе значительно меньше скорости света, идущего от молнии.
Что такое звукоизоляция и акустика. Акустический комфорт помещения. Механизм передачи звука - распространение звука в различных средах. - student2.ru Скорость звука в воздухе впервые была измерена в 1636 г. французским ученым М. Мерсенном. При температуре 20 °С она равна 343 м/с, т.е. 1235 км/ч. Заметим, что именно до такого значения уменьшается на расстоянии 800 м скорость пули, вылетевшей из пулемета Калашникова (ПК). Начальная скорость пули 825 м/с, что значительно превышает скорость звука в воздухе. Поэтому человек, услышавший звук выстрела или свист пули, может не беспокоиться: эта пуля его уже миновала. Пуля обгоняет звук выстрела и достигает своей жертвы до того, как приходит этот звук.

Скорость звука зависит от температуры среды: с увеличением температуры воздуха она возрастает, а с уменьшением - убывает. При 0 °С скорость звука в воздухе составляет 331 м/с.

В разных газах звук распространяется с разной скоростью. Чем больше масса молекул газа, тем меньше скорость звука в нем. Так, при температуре 0 °С скорость звука в водороде 1284 м/с, в гелии - 965 м/с, а в кислороде - 316 м/с.

Звук в жидкостях. Скорость звука в жидкостях, как правило, больше скорости звука в газах. Скорость звука в воде впервые была измерена в 1826 г. Ж- Колладоном и Я. Штурмом. Свои опыты они проводили на Женевском озере в Швейцарии (рис. 53). На одной лодке поджигали порох и одновременно ударяли в колокол, опущенный в воду. Звук этого колокола с помощью специального рупора, также опущенного в воду, улавливался на другой лодке, которая находилась на расстоянии 14 км от первой. По интервалу времени между вспышкой света и приходом звукового сигнала определили скорость звука в воде. При температуре 8 °С она оказалась равной примерно 1440 м/с.
Что такое звукоизоляция и акустика. Акустический комфорт помещения. Механизм передачи звука - распространение звука в различных средах. - student2.ru

На границе между двумя разными средами часть звуковой волны отражается, а часть проходит дальше. При переходе звука из воздуха в воду 99,9 % звуковой энергии отражается назад, однако давление в прошедшей в воду звуковой волне оказывается почти в 2 раза больше. Слуховой аппарат рыб реагирует именно на это. Поэтому, например, крики и шумы над поверхностью воды являются верным способом распугать морских обитателей. Человека же, оказавшегося под водой, эти крики не оглушат: при погружении в воду в его ушах останутся воздушные "пробки", которые и спасут его от звуковой перегрузки.

При переходе звука из воды в воздух снова отражается 99,9 % энергии. Но если при переходе из воздуха в воду звуковое давление увеличивалось, то теперь оно, наоборот, резко уменьшается. Именно по этой причине, например, не доходит до человека в воздухе звук, возникающий под водой при ударе одним камнем о другой.

Такое поведение звука на границе между водой и воздухом дало основание нашим предкам считать подводный мир "миром молчания". Отсюда же и выражение: "Нем как рыба". Однако еще Леонардо да Винчи предлагал слушать подводные звуки, приложив ухо к веслу, опущенному в воду. Воспользовавшись таким способом, можно убедиться, что рыбы на самом деле довольно болтливы.

Звук в твердых телах. Скорость звука в твердых телах больше, чем в жидкостях и газах. Если вы приложите ухо к рельсу, то после удара по другому концу рельса вы услышите два звука. Один из них достигнет вашего уха по рельсу, другой - по воздуху.

Хорошей проводимостью звука обладает земля. Поэтому в старые времена при осаде в крепостных стенах помещали "слухачей", которые по звуку, передаваемому землей, могли определить, ведет ли враг подкоп к стенам или нет. Прикладывая ухо к земле, также следили за приближением вражеской конницы.

Твердые тела хорошо проводят звук. Благодаря этому люди, потерявшие слух, иной раз способны танцевать под музыку, которая доходит до их слуховых нервов не через воздух и наружное ухо, а через пол и кости.

Наши рекомендации