Парентеральные пути введения лекарственных средств: клиническое значение,возможные лекарственные формы.

1. Введение под кожу. Применяют стерильные, изотонические водные и масляные раство­ры лекарств, не обладающих раздражающим действием (подкожная жировая клетчатка богата болевыми окончаниями) и не вызывающих спазм сосудов кожи. Объем вводимого раствора не должен превышать 1-2 мл. Фармакологический эффект возникает через 15-20 минут пос­ле инъекции. Недопустимо введение под кожу растворов раздражаю­щего вещества кальция хлорида и сильного сосудосуживающего сред­ства норадренапина вследствие опасности некроза.

2. Введение в мышцы. Применяют стерильные изотонические водные и масляные раство­ры и взвеси. Эффект развивается быстрее, чем при инъекции под кожу, - через 10-15 минут, так как мышцы имеют обильное кровоснаб­жение. Объем внутримышечной инъекции не должен превышать 10 мл. При введении в мышцы масляных растворов и взвесей получают депо лекарственных средств, обеспечивающее их длительное поступление в кровь и пролонгированное действие (препараты инсулина, бензил-пенициллина).

3. Введение в вену. Применяют стерильные водные растворы или жировые ультраэмуль­сии заводского приготовления. Допустимо введение гипертонических растворов (не более 20-40 мл) и средств со слабым раздражающим действием (во избежание флебита вены промывают физиологическими растворами глюкозы или натрия хлорида). Эффект после вливания в вену в 5-10 раз выше по сравнению с активностью при приеме препа­ратов внутрь, наступает быстро. Например, наркозные средства гексе-нал и тиопентал-натрий вызывают потерю сознания через несколько секунд после введения ("на конце иглы"). Внутривенные инъекции про­водят медленно, чтобы в органах с богатым кровоснабжением (голов­ной мозг, сердце, легкие, почки, печень) не создавались токсические концентрации лекарств.

Инфузия в вену возможна в виде одномоментного введения болюса или длительного капельного вливания.

5.ПАРЕНТЕРАЛЬНЫЕ ПУТИ ВВЕДЕНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ: КЛИ­НИЧЕСКОЕ ЗНАЧЕНИЕ, ВОЗМОЖНЫЕ ЛЕКАРСТВЕННЫЕ ФОРМЫ.

1. Введение в артерии. Для введения в артерии, а также внутрисердечно, в губчатое веще­ство костей, субарахноидальное и эпидуральное пространства исполь­зуют только стерильные изотонические водные растворы лекарств.

В артерии пораженных органов вводят антибиотики и противоопу­холевые средства в высоких концентрациях. При эндартериите и отмо­рожении в артерии конечностей вливают сосудорасширяющее веще­ство ацетилхолин. Доступ к артериям хирургический, создают артериовенозный шунт, чтобы исключить попадание токсических лекарств в си­стемный кровоток.

2. Внутрисердечный путь. Единственным показанием для этого пути служит остановка здорово-го сердца при травмах. В полость левого желудочка вводят адреналин

3. Внутрикостный путь. Обеспечивает такую же скорость наступления эффекта, как и внут­ривенные инъекции. В губчатое вещество пяточной кости вливают мес­тные анестетики (лидокаин) при операциях на конечностях. У детей про­водят внутрикостный наркоз гексеналом, разработанный на кафедре детской хирургии Сибирского медицинского университета профессо­ром И.С.Венгеровским и доцентом О.И.Земляковой.

4. Субарахноидальный и эпидуральный пути. В субарахноидальное или эпидуральное пространства спинного моз­га вводят местные анестетики для спинномозговой анестезии, наркоти­ческие анальгетики с целью лечебной анальгезии, антибиотики при ме­нингите. Инъекцию проводят на уровне нижних грудных - верхних пояс­ничных позвонков атравматической иглой диаметром менее 0,4 мм с конусовидным концом типа "pencil point". Это необходимо потому, что отверстие в твердой мозговой оболочке плохо затягивается. Через него сочится ликвор с развитием перепадов внутричерепного давления и появлением тяжелой головной боли. При объеме инъекции более 1 мл удаляют соответствующее количество ликвора.

5. Ингаляционный путь. Позволяет получить быстрый резорбтивный эффект лекарств в свя­зи с большой площадью контакта альвеол и капилляров (150-200 м2). Ингаляционно вводят наркозные средства - летучие жидкости и газы, а также с целью местного действия применяют аэрозоли бронхолитичес-ких средств, глюкокортикоидов, местных анестетиков, антибиотиков, порошок противогистаминного препарата кромолина-натрия (интап).

Глубина проникновения аэрозолей в дыхательные пути зависит от размеров частиц. Частицы величиной 60 мкм оседают в глотке и попада­ют в желудок, частицы величиной 20 мкм проникают в терминальные брон­хиолы, размером 2 мкм - в предальвеолярный жом, 1 мкм - в альвеолы.

Следует учитывать сложность дозирования лекарств для ингаляци­онного применения, их раздражающее влияние на легкие, опасность воздействия на медицинский персонал, возможность поступления ал­лергенов.

6. Накожный путь. Применяют лекарственные средства в форме мазей, паст, раство­ров, эмульсий, суспензий для местного воздействия при заболеваниях кожи, ранах, ожогах или с целью получения рефлекторных ответов со стороны внутренних органов. Следует учитывать возможность всасыва­ния липидорастворимых лекарств в кровь, особенно при повреждении кожи, воспалении и у детей. У детей тонкий роговой слой кожи, повы­шено содержание воды в подкожной жировой клетчатке, увеличено по сравнению с показателем взрослых отношение площади поверхности к массе тела. У недоношенных детей, кроме того, отсутствуют врожден­ные барьерные свойства кожи. Описаны отравления гидрокортизоном, борной кислотой, нанесенными на кожу детей, даже со смертельным исходом.

В последнее время стали использовать трансдермальные терапев­тические системы (TTS) для длительного всасывания лекарств с повер­хности кожи с целью резорбтивного действия. Применяют дозирован­ные мази нитроглицерина и анаприлина для профилактики приступов стенокардии, теофиллина - для курсового лечения бронхиальной аст­мы, скополамина - при укачивании.

Лекарственные средства назначают также в виде капель в глаз, нос, ухо, наносят на слизистую оболочку носа, вводят в уздечку языка.

6.ВИДЫ ТРАНСПОРТА ЛЕКАРСТВЕННЫХ СРЕДСТВ ЧЕРЕЗ МЕМБРАНЫ. БИО­ЛОГИЧЕСКАЯ ДОСТУПНОСТЬ

Пассивная диффузия

Пассивная диффузия происходит по градиенту концентрации ле­карств - из зоны с большей концентрацией в зону с меньшей концент­рацией, не требует затрат энергии макроэргов. Простая диффузия

Простая диффузия осуществляется путем растворения лекарств в липидном бислое мембран. Липидорастворимостью независимо от ус­ловий среды обладают лишь немногие вещества - ингаляционные нар­козные средства, этиловый алкоголь. Большинство же препаратов яв­ляются слабыми кислотами или слабыми основаниями и образуют как липидорастворимые нейтральные молекулы, так и водорастворимые ионы. Соотношение нейтральных молекул и ионов зависит от физико-химических свойств лекарств и водородного показателя (рН) среды, из которой происходит всасывание.

У слабой кислоты с рКа*=4,4 содержание нейтральных молекул в же­лудочном соке (рН =1,4) в 1000 раз больше, чем в крови (рН=7,4), напро­тив, количество ионов в 1000 раз больше в крови, чем в желудочном соке. У слабого основания с таким же рКа соотношение нейтральных молекул и ионов составляет в крови 1000:1, в желудочном соке - 1:1000.

Условия всасывания лекарств-слабых кислот и оснований различ ные. Противовоспалительное средство ацетилсалициловая кислота име­ет рК а=3,6. В кислой среде желудочного сока она присутствует в виде липидорастворимых нейтральных молекул, в щелочной среде кишечни­ка (рН=6,8-7,2) - в виде водорастворимых ионов. В крови при рН=7,4 ацетилсалициловая кислота находится в ионизированной форме, поэто­му плохо проникает в ткани. В очаге воспаления в условиях ацидоза преобладают нейтральные молекулы.

Другими представителями лекарств-слабых кислот являются проти-восудорожные средства фенобарбитал, дифенин; нестероидные про­тивовоспалительные вещества бутадион, индометацин, ортофен; моче­гонный препарат фуросемид; непрямые антикоагулянты; гипогликеми-ческий препарат бутамид; противомикробные средства - сульфанила­миды, тетрациклин.

Слабые основания - алкалоиды (морфин, кодеин, папаверин, кофе­ин, атропин и многие другие) и синтетические азотсодержащие веще­ства (анальгин, димедрол) образуют нейтральные молекулы в кишечни­ке, крови и клетках.

Знание особенностей всасывания лекарств с различными физико-химическими свойствами имеет большое медицинское значение.

При отравлении производными барбитуровой кислоты для ускорения их эли­минации из организма проводят форсированный диурез - вливают в вену моче­гонные средства и изотонические растворы глюкозы и натрия хлорида с добавле­нием натрия гидрокарбоната. Последний создает в первичной моче щелочную среду, в которой ускоряется диссоциация барбитуратов на ионы, не подвергаю­щиеся реабсорбции в почечных канальцах.

При отравлении морфином и некоторыми другими алкалоидами, введенными парентерально, необходимо проводить промывание желудка растворами слабых кислот - уксусной или лимонной, так как около 10% молекул алкалоидов простой диффузией по градиенту концентрации проникает из крови в просвет желудка, где в условиях кислой среды диссоциирует на ионы. Ионы могут поступать в ки­шечник и вновь образовывать нейтральные молекулы, всасывающиеся в кровь. Промывание желудка направлено на повышение диссоциации и удаление нейт­ральных молекул алкалоидов.

Нейтральные молекулы лекарств отличаются по растворимости в липидах в зависимости от присутствия в их структуре полярных групп. Полярные вещества плохо растворяются в липидах и менее способны к всасыванию простой диффузией. Фильтрация через поры

Фильтрация лекарств через поры клеточной мембраны происходит с током воды в зависимости от гидростатического и осмотического дав­лений и возможна только для нейтральных молекул, имеющих молеку­лярную массу не более 100-200 Да. Это обусловлено размером пор, равным 0,35-0,4 нм, и присутствием в них фиксированных зарядов. Филь­трации подвергаются мочевина, тиомочевина, глюкоза.

Активный транспорт

Активный транспорт лекарств происходит против градиента концен­трации (в сторону большей концентрации) с затратой энергии макро­эргов и при участии белков-переносчиков.

Активным транспортом переносятся лекарства-эндобиотики - ана­логи метаболитов организма, использующие естественные системы пе­реноса. Известно, что йод поступает в фолликулы щитовидной железы против пятидесятикратного градиента концентрации. Норадреналин под­вергается нейрональному захвату нервными окончаниями против двух­соткратного градиента. Активным транспортом при участии естествен­ных систем переноса кислот и оснований происходит секреция веществ в почечных канальцах.

Возможна конкуренция лекарств за связь с белками-переносчиками в процессе активного транспорта. Например, пробенецид используют для пролонгирования действия бензилпенициллина. Этот антибиотик подвергается секреции в почечных канальцах при участии белка-пере­носчика, высоким сродством к которому обладает пробенецид.

Многие лекарства нарушают функцию ферментов активного транс­порта (сердечные гликозиды блокируют мембранную Na+, К+-АТФ-азу).

Пиноцитоз

Пиноцитоз характерен для высокомолекулярных лекарств - поли­пептидов и осуществляется путем инвагинации клеточной мембраны с образованием вакуоли, содержащей лекарство. Эта вакуоль мигрирует к противоположной стороне мембраны. Пиноцитозом происходит вса­сывание в тонком кишечнике витамина В12 в комплексе с гликопротеи-ном - внутренним фактором Касла.

Важнейшей характеристикой всасывания является биодоступность -часть дозы лекарств, поступающая в кровь и биофазу циторецепторов. Биодоступность зависит от физико-химических особенностей лекарств, лекарственной формы и технологии ее приготовления, пути введения, интенсивности кровотока, площади всасывающей поверхности (наиболь­шая - в альвеолах легких и слизистой оболочке кишечника). При внут­ривенной инъекции транспорт веществ в ткани происходит по широким межклеточным щелям между эндотелием, поэтому биодоступность до­стигает 100%. При других путях введения она меньше. В случае приема лекарств внутрь большое значение для биодоступности имеют лекар­ственные формы (лекарства лучше всасываются из растворов, мелко­дисперсных взвесей, микрогранул, хуже - из таблеток, драже, капсул), а также присутствие пищи, состояние пищеварительного тракта и сер­дечно-сосудистой системы, интенсивность метаболизма в печени.

Биодоступность лекарств зависит от возраста больного. В педиатрической практике необходимо считаться с особенностями всасывания лекарств у детей: •Желудочный сок имеет нейтральную реакцию (сразу после рождения рН = 6-8) и

приобретает такую же, как у взрослых, кислотность только ко 2-му году жизни

ребенка;

*8-19% новорожденных страдают гипохлоргидрией; «Эвакуаторная деятельность желудка нерегулярна в течение первых 6 месяцев

жизни (материнское молоко усиливает моторную деятельность желудка); • Кишечник характеризуется низкой микробной обсемененностью с высокой

активностью р-глюкуронидазы микробов;

*Уменьшены синтез и выделение желчных кислот, что нарушает всасывание жиро­растворимых веществ, например, витаминов.

Изменение биодоступности лекарств у пожилых людей обусловлено физиоло­гическим старением органов и тканей и наличием заболеваний. В пожилом возра­сте увеличивается кислотность желудочного сока, нарушаются эвакуаторная функ-

ция желудка и всасывание лекарств в кишечнике (например, сердечного гликозида дигоксина).

7.БИОБАРЬЕРЫ ИХ ПРОНИЦАЕМОСТЬ ДЛЯ ЛЕКАРСТВ

ГИСТОГЕМАТИЧЕСКИЕ БАРЬЕРЫ

Из крови лекарства поступают в органы, преодолевая гистогемати-ческие барьеры - капиллярную стенку, гематоэнцефалический, гемато-офтальмический и плацентарный барьеры.

Капиллярная стенка

Капилляры легко проницаемы для лекарств. Липидорастворимые вещества диффундируют через эндотелий и базальную мембрану, во­дорастворимые - через цементирующее вещество (гиалуроновая кис­лота) или широкие поры, занимающие 0,2% поверхности капиллярной стенки. Транспорт по капиллярным порам возможен для соединений с молекулярной массой, не больше массы инсулина (5-6 кДа). При луче­вой болезни и воспалении происходит активация гиалуронидазы с рос­том проницаемости капилляров.

Гематоэнцефалический и гематоофтальмический барьеры

Гематоэнцефалический барьер (ГЭБ) представлен капиллярной стен­кой с плотными контактами между эндотелием, а также основным межу­точным веществом и астроглией головного и спинного мозга. Глиальные клетки выстилают примерно 85% поверхности капилляров. Через ГЭБ простой диффузией проникают только липидорастворимые вещества (нар­козное средство тиопентал-натрий, противопаразитарный препарат мет-ронидазол), меньшую роль играет активный транспорт. Для полярных соединений (пенициллины, миорелаксанты) ГЭБ не проницаем. Осмоти­чески активные средства (маннит) могут вызыватьповреждение ГЭБ (осо­бенно у детей) с последующим усилением отека мозга и поступлением в него эндогенных токсических веществ (билирубин).

ГЭБ гипоталамуса, гипофиза, эпифиза отличается повышенной про­ницаемостью для лекарств.

При менингите, арахноидите, гипоксии, черепномозговых травмах, шоке проницаемость ГЭБ возрастает. У больных тяжелым менингококко-вым менингитом проникновение антибиотика рифампицина в головной

мозг составляет 26% от дозы, при менингите средней тяжести - 14,3%, при легком менингите - 5,2%. При менингите концентрация антибиотика канамицина в головном мозге в 2-8 раз выше, чем в плазме крови.

Удаление лекарств из мозга происходит при участии сосудистого спле­тения желудочков по типу секреции веществ в почечных канальцах или с током спинномозговой жидкости через ворсинки паутинной оболочки.

Гематоофтальмический барьер разделяет кровь капилляров и внут­риглазную жидкость в камерах глаза. В среды глаза хорошо проникают липидорастворимые лекарства.

Плацентарный барьер

Плацентарный барьер разделяет кровообращение матери и плода. Проникно­вение через этот барьер зависит от физико-химических характеристик лекарств, их концентрации в крови, морфо-функционального состояния плаценты в разные сроки беременности, плацентарного кровотока. К плоду поступают несвязанные с белками и липидорастворимые лекарства с молекулярной массой менее 1 кДа, не проникают четвертичные азотистые соединения и высокомолекулярные вещества (плазмозаменители, гепарин, белки). Основными типами транспорта через пла­центу являются простая диффузия, активный перенос и пиноцитоз.

Проницаемость плацентарного барьера значительно повышается с 32-35-й недели беременности в результате истончения плаценты (с 25 до 2 мкм), увеличе­ния количества ворсин, расширения спиральных артерий с ростом перфузионного давления в межворсинчатом пространстве.

Особенности кровообращения у плода увеличивают опасность повреждения его лекарственными средствами. После прохождения через плаценту лекарства попадают в пупочную вену, затем 60-80% крови направляется в печень через во­ротную вену, а остальные 20-40% пуповинного кровотока через шунт поступает в нижнюю полую вену и системный кровоток без детоксикации в печени.

Некоторые лекарства - сердечный гликозид дигитоксин, противотуберкулез­ный препарат фтивазид - концентрируются в тканях плода, создавая концентрации в 1,5-2 раза большие, чем в крови матери. Другие лекарства - антибиотики, кофе­ин, витамин Е - обнаруживаются в крови плода в меньших (на 50-70%) количествах, чем у матери.

В связи с опасностью эмбриолетального, эмбриотоксического, тератогенного и фетотоксического действия многие лекарства противопоказаны при беременно­сти. Известно, что частота врожденных уродств в популяции равна 2-3%, при этом в 25% случаев они объясняются наследственными причинами, в 10% - отрица­тельным влиянием факторов внешней среды, в 65% - нежелательными эффекта­ми лекарств.

РАСПРЕДЕЛЕНИЕ ЛЕКАРСТВ

После всасывания в кровь или непосредственного введения в кро­воток лекарства подвергаются распределению в водной фазе организ­ма, включающей кровь, внеклеточную и внутриклеточную воду (70% мас­сы тела). У детей в связи с большим, чем у взрослых, содержанием воды в организме, возрастает объем распределения некоторых ле­карств - сердечного гликозида дигоксина, холиноблокатора атропина, антибиотиков-аминогликозидов, поэтому их назначают в дозе, увели­ченной на 1 кг массы по сравнению с дозой у взрослых. При обезвожи­вании объем распределения лекарств уменьшается с ростом их кон­центрации и усилением фармакологических эффектов.

При внутривенном вливании наибольшая концентрация лекарств вначале создается в органах с обильным кровоснабжением - головном мозге, сердце, печени, почках, легких, эндокринных железах, получаю­щих 2/3 минутного объема крови. Спустя 6-10 минут лекарства пере­распределяются в органы с меньшим кровоснабжением - скелетные мышцы, жировую ткань. При введении внутрь, в мышцы и под кожу, вса­сывание и распределение происходят параллельно.

Кровь и хорошо перфузируемые органы относят к центральной камере; мышцы, кожу и жировые депо - к периферической камере. Понятие камеры условно, так как за ним не стоят анатомические образования, это фармакокинетическая модель.

Истинный объем распределения представляет собой объем жидких сред организма, в которых растворено лекарственное вещество. Очевидный объем распределения является абстрактным понятием, включающим истинный объем распределения и объем распределения части дозы, депонированной в связи с белками крови и в жировой ткани, другими словами, - это объем жидких сред организма, в которых могла бы распределиться вся введенная доза, чтобы со­здать концентрацию, равную концентрации в плазме крови. Объем распределения зависит от физико-химических свойств лекарства (молекулярная масса, раст­воримость в воде и липидах, степень диссоциации), возраста, пола больного, массы жировых депо, функционального состояния печени, почек, сердечно­сосудистой системы.

Депонирование лекарств. В крови лекарства транспортируются в форме депо с белками. Сла­бые кислоты связываются с альбуминами, слабые основания - с кислыми а,-гликопротеинами. Адсорбция лекарств на белках обратима и происхо­дит при участии вандерваальсовых, водородных, ионных, дипольных сил взаимодействия, алкилирование белков наблюдается редко. Комплекс с белками легче образуют липидорастворимые неполярные вещества. При высокой концентрации лекарств наступает насыщение мест связывания на белках крови. Более, чем на 90%, с белками связываются нейролептик аминазин, трициклические антидепрессанты, противоэпилептический пре­парат дифенин, (бета-адреноблокатор анаприлин, сердечный гликозид диги-токсин, мочегонное средство фуросемид. Специфические транспортные белки есть у витаминов, гормонов, ионов железа. Депонированные в комплексе с белками лекарства не оказывают фармакологическое действие. При дефиците белков крови (недоношен­ность, гипотрофия детей, голодание, заболевания печени и почек, ожо­ги) возрастает доля свободной фракции с усилением фармакологичес­ких эффектов. Связь с белками замедляет гломерулярную фильтрацию лекарств, но мало влияет на их секрецию в почечных канальцах и биотрансформацию. Лекарства могут конкурировать между собой и с естественными метаболитами организма за связь с белками крови. Так, лекарства кис­лого характера вытесняют из связи с белками билирубин с опасностью возникновения энцефалопатии у новорожденных. Белковая связь ле­карств играет роль в возникновении аллергических реакций. Лекарства адсорбируются также на эритроцитах (нитрофураны, ви-касол, местные анестетики) и тромбоцитах (серотонин). Связывание лекарств с белками крови зависит от многих факторов. В детском возрасте этот процесс происходит в меньшей степени, чем у взрослых (для сиба-зона, дифенина, анаприлина, лидокаина, теофиллина, ампициллина), так как у де­тей уменьшен синтез альбуминов и кислых альфа ,-гликопротеинов печенью (к 1-му году жизни ребенка их количество еще не достигает уровня взрослых), белки имеют качественно другую последовательность аминокислот, перегружены продуктами метаболизма (билирубин, жирные кислоты, стероиды). У пожилых людей наблюдается уменьшенное связывание тиопентала-натрия, дифенина, салициловой кислоты, бутамида в результате относительного дефицита альбуминов в крови. Имеются сообщения о зависимости от пола в связывании с белками антидеп­рессанта имипрамина, транквилизатора сибазона, антикоагулянта варфарина. У женщин связь лекарств с белками модифицируют эстрогены. В 3-м триместре беременности концентрация альбуминов в крови снижается на 1 г/100 мл с ослаб­лением связывания лекарств на 20%. Под генетическим контролем находятся рас­положение остатков сиаловой кислоты и композиция пептидной цепи в молекулах альфа ,-гликопротеина. Липидорастворимые лекарства депонируются в жировой ткани, на­пример, наркозное средство тиопентал-натрий после инъекции в вену быстро поступает в головной мозг и вызывает наркоз, но уже спустя 20-25 минут его основное количество оказывается в скелетных мыш­цах, а затем в жировых депо. Из депо тиопентал медленно вновь по­ступает в кровь и головной мозг, поэтому в посленаркозном периоде возникают депрессия и сонливость. У тучных людей масса жира дос­тигает 50% массы тела. Некоторые лекарства подвергаются избирательному распределению. Сердечные гликозиды создают в сердце концентрацию, в 4-10 раз бо­лее высокую, чем в крови; тетрациклин связывается с ионами кальция в костях.

БИОТРАНСФОРМАЦИЯ ЛЕКАРСТВ

Биотрансформация представляет собой метаболические превраще­ния лекарств, в результате которых они приобретают полярные группы. При этом уменьшается растворимость в липидах, и возрастает раство­римость в воде. Полярные метаболиты в меньшей степени, чем исход­ные вещества, подвергаются энтерогепатической циркуляции (выведе­ние с желчью в кишечник и повторное всасывание в кровь) и реабсорб-ции в почечных канальцах. Без биотрансформации одна терапевтичес­кая доза снотворного средства этаминала могла бы находиться в орга­низме 100 лет.

Эндобиотики подвергаются превращениям под влиянием специфи­ческих ферментов, осуществляющих метаболизм их эндогенных прото­типов. Ксенобиотики используют для метаболизма ферменты с малой субстратной специфичностью, например, окисляются при участии ци-тохрома Р-450, созданного в эволюции 3,5 миллиарда лет тому назад.

Биотрансформация ксенобиотиков происходит в печени (90-95%), слизистой оболочке тонкого кишечника, почках, легких, коже и других органах, а также в крови. Наиболее изучены процессы биотрансформа­ции, протекающие на мембранах гладкого эндоплазматического рети-кулума (ЭПР) печени. При гомогенизации и ультрацентрифугировании клеток печени канальцы ЭПР разрываются и превращаются в функцио­нально активные фрагменты - микросомы. Другими компартментами клеток, осуществляющими биотрансформацию, являются ядро, цитозоль, митохондрии, плазматическая мембрана.

Реакции биотрансформации разделяют на 2 фазы. В реакциях пер­вой фазы - метаболической трансформации молекулы лекарств под­вергаются окислению, восстановлению или гидролизу. Их активность в результате метаболической трансформации, как правило, снижается, но может и повышаться. Во второй фазе - реакциях конъюгации исход­ные или предварительно метаболически измененные молекулы лекарств присоединяют ковалентной связью полярные фрагменты с образовани­ем неактивных продуктов. Для реакций конъюгации необходима затра­та энергии.

Реакции метаболической трансформации

Окисление

В ЭПР функционирует НАДФ-Н-зависимая дыхательная цепь. Ее терминальным переносчиком является цитохром Р-450 - мембраносвя-занный липофильный фермент группы многоцелевых монооксигеназ (включают кислород в субстраты). Цитохром Р-450 глубоко погружен в

липидный бислой мембраны ЭПР и функционирует совместно с НАДФ • Н-зависимой цитохром Р-450-редуктазой (соотношение количества мо­лекул цитохрома Р-450 и редуктазы составляет 10:1).

Вначале окисленный цитохром Р-450 присоединяет лекарство. Ком­плекс цитохром-лекарство восстанавливается цитохром Р-450-редукта-зой с использованием электрона НАДФ • Н и затем реагирует с молеку­лярным кислородом. Для активации кислорода необходимо присоеди­нение второго электрона. На финальном этапе монооксигеназной ре­акции один атом кислорода включается в молекулу окисляемого лекар­ства, второй - освобождается в составе воды, а окисленный цитохром Р-450 регенерирует (см. схему).

Суперсемейство цитохромов Р-450 поражает своими почти неогра­ниченными метаболическими возможностями. Оно включает более 300 клонированных вариантов цитохрома Р-450, способных катализи­ровать около 60 типов энзиматических реакций с сотнями потенциаль­ных субстратов. В клетках человека обнаружено 12 семейств цитохрома Р-450. В молекулах изоферментов одного семейства идентичны более 55% аминокислот, в молекулах, принадлежащих к разным семействам, идентичны 40% аминокислот.

Большинство реакций катализируют изоферменты цитохрома Р-450 семейств 1,2 и 3, из них основной изофермент для окисления лекарств -цитохром Р-450 ЗА.

Реакция окисление ксенобиотиков при участии цитохрома Р-450 легко

подвергается рас­щеплению с обра­зованием свобод­ных радикалов кислорода и высо­коактивных интер-медиатов (проме­жуточные продук­ты - эпоксиды, N-, S-окиси), стиму­лирующих пере-кисное окисление мембранных ли-пидов и вызываю­щих токсические некрозы клеток, появление неоан­тигенов, терато­генный, эмбрио-токсический эф-

фекты, мутации, канцерогенез и ускорение старения. По этой причине не существует абсолютно безвредных ксенобиотиков. При их окисле­нии образуются метаболиты, серьезно повреждающие клетки. Токси­ческие продукты биотрансформации обезвреживаются конъюгацией с восстановленным глутатионом и ковалентным связыванием с альбуми­нами. Повреждение молекулы альбумина не является опасным для орга­низма, так как этот белок синтезируется в печени со скоростью 10-16 г в день и присутствует в высоких концентрациях в ЭПР.

Ряд лекарств - "суицидных субстратов" - в процессе окисления раз­рушают цитохром Р-450. "Суицидными субстратами" являются четырех-хлористый углерод, фторотан, парацетамол, преобразуемые цитохро-мом Р-450 в свободные радикалы. Такой эффект можно рассматривать не только как токсический, но и как защитный - элиминируются молеку­лы цитохрома Р-450, интенсивно генерирующие реакционноспособные метаболиты.

Восстановление

Реакции восстановления характерны для альдегидов, кетонов и карооновых кислот. В ряде случаев восстановление и окисление катализируются одним и тем же ферментом и являются обратимыми (окисление и восстановление продукта метаболизма этилового алкоголя - уксусного альдегида). Восстановлению под­вергаются окисленные метаболиты лекарств - кетоны и карбоновые кислоты (фе­намин превращается в фенилизопропанол через стадию фенилацетона).

Ароматические соединения, содержащие нитрогруппу, подвергаются нитро-редукции. Промежуточными продуктами этой реакции служат нитрозо- и гидро-ксиламиносоединения. В печени функционируют микросомальная и цитоплазма-тическая нитроредуктазы, в кишечнике - бактериальная нитроредуктаза.

Лекарства с азогруппой восстанавливаются в первичные амины в микросомах печени и кишечной микрофлорой, например, салазопиридазин, применяемый для терапии неспецифического язвенного колита, расщепляется по азосвязи с осво­бождением сульфапиридазина и 5-аминосалициловой кислоты.

Гидролиз

Гидролиз характерен для лекарств-сложных эфиров и замещенных амидов, происходит в цитозоле и ЭПР эпителия кишечника и гепатоци-тов, а также в крови. Для реакций гидролиза, катализируемых эстераза-ми и амидазами, необходимо участие воды. В результате гидролиза про­исходит распад молекул лекарств на фрагменты, один из которых - кис­лотный или спиртовый может проявлять фармакологическую активность,

В медицине используют пролекарства, активируемые в результате гидролиза ферментами организма, например, левомицетина стеарат, не обладающий горьким вкусом левомицетина, в кишечнике освобождает активный антибиотик. Растворимый препарат для инъекций левомицети­на сукцинат образует левомицетин под влиянием гидролаз тканей. Конъюгация

Наибольшее значение имеет глюкуронирование - присоединение активированной уридиндифосфатом (УДФ) глюкуроновой кислоты к али-

фатическим, ароматическим спиртам, карбоновым кислотам, веществам с аминогруппой и сульфгидрильной группой. Глюкуронирование ката­лизирует УДФ-глюкуронилтрансфераза. Этот фермент функционирует в ЭПР и цитозоле клеток печени, почек, кишечника, кожи. О-, N- и S-глюкурониды хорошо растворяются в воде и подвергаются экскреции с мочой и желчью. Глюкурониды, экскретируемые с желчью, в кишечни­ке под влиянием фермента бактерий р-глюкуронидазы превращаются в исходные вещества и повторно всасываются в кровь, что дает начало энтерогепатической циркуляции (сердечные гликозиды наперстянки, ле-вомицетин).

Сульфатирование характеризуется переносом неорганического суль­фата от 3'-фосфоаденозил-5'-фосфосульфата на гидроксил алифати­ческих спиртов и фенолов при участии фермента цитозоля - сульфо-трансферазы.

Ряд лекарственных средств в малых дозах образуют сульфоконъю-гаты, в больших дозах - глюкурониды.

Ацетилирование представляет собой присоединение уксусной кис­лоты от ацетилкоэнзима А к аминам, гидразинам, сульфаниламидам, катализируемое ацетилтрансферазой цитозоля клеток. Ацетилирован-ные метаболиты плохо растворяются в воде и элиминируются медленно.

Метилирование - перенос метила от S-аденозилметионина на ле­карство под влиянием метилтрансферазы. Это единственная реакция, которая не сопровождается образованием полярных метаболитов.

ИЗМЕНЕНИЕ БИОТРАНФОРМАЦИИ

Особенностью человека является относительно раннее появление в организ­ме ферментных систем, обеспечивающих метаболизм лекарств. Система фермен­тов печени начинает функционировать в гестационном периоде (6-8 недель раз­вития). Биотрансформацию осуществляет также плацента. К моменту рождения в печени могут окисляться многие химические соединения. Однако активность фер­ментов биотрансформации у новорожденных составляет только 20-80% активности ферментов у взрослых. У новорожденных отмечаются качественные отличия в характере биотранс­формации. Функционирует атипичный изофермент цитохрома Р-450 ЗА7, преоб­ладают реакции метилирования (теофиллин превращается в кофеин).

В пожилом возрасте биотрансформация лекарств (анаприлин, транквилизато­ры) замедляется вследствие снижения массы печени, перестройки ее структуры, накопления в гепатоцитах липофусцина, ухудшения печеночного кровотока. Воз­можно качественное изменение реакций биотрансформации у пожилых людей. У лиц молодого возраста преобладает ацетилирование изониазида, а у пожилых людей - окисление.

У животных-самцов в печени выше содержание цитохрома Р-450, поэтому реакции биотрансформации ксенобиотиков протекают более быстро, чем у самок. Это обусловлено действием андрогенов (мужских половых гормонов) как индукто­ров, эстрогенов и гестагенов (женских половых гормонов) как ингибиторов. При беременности биотрансформация ряда лекарств (дифенин, гидрокорти­зон) замедляется, так как гормоны прогестерон и лрегнандиол ингибируют цитох-ром Р-450 и глюкуронилтрансфераз.

При голодании интенсивность окисления ксенобиотиков нарушается вслед­ствие дефицита цитохрома Р-450 и микросомальных белков, изменения структуры ЭПР печени. Замедление окисления происходит несмотря на уменьшение свя­зывания лекарств с белками и повышение их доступности для систем метабо­лизма.

Существенное ухудшение биотрансформации возникает при заболеваниях пе­чени - гепатите и циррозе в связи с нарушением активности цитохрома Р-450 и систем конъюгации, уменьшением белковосинтетической функции печени, возник­новением порто-кавальных анастомозов (между воротной и нижней полой венами).

Возможны индивидуальные колебания скорости биотрансформации в резуль­тате генетически обусловленных различий активности ферментов. Мутация изо-фермента цитохрома Р-450 2D6 сопровождается торможением детоксикации пси­хотропных и противоаритмических средств. Известны ситуации, когда проявляются различия активности ацетилтрансферазы. При лечении туберкулеза изониазидом (гидразид изоникотиновой кислоты) наблюдается неодинаковая его переносимость больными. У части больных не возникают побочные эффекты изо-ниазида, другие пациенты жалуются на головную боль, головокружение, тошноту, рвоту, боль за грудиной, раздражительность, бессонницу, тахикардию, полинев­рит. Побочное действие изониазида связано с тем, что его доза оказалась завы­шенной вследствие недостаточного ацетилирования в печени.

При недостаточности глюкозо-6-фосфатдегидрогеназы прием лекарствсильных окислителей, транспортируемых эритроцитами, ведет к развитию массивного гемолиза и гемолитического криза. В число опас­ных препаратов входят некоторые местные анестетики, ацетилсалици­ловая кислота, парацетамол, нитрофураны, сульфаниламиды, противо­малярийные средства хинин, хингамин и примахин, левомицетин, мети-леновый синий, синтетический витамин К (викасол).

ВЫВЕДЕНИЕ ЛЕКАРСТВ

Лекарственные вещества и их полярные метаболиты покидают орга­низм с мочой, калом, выдыхаемым воздухом, секретами желез. В почках лекарства подвергаются фильтрации, секреции и реабсор-бции. Фильтруются несвязанные с белками лекарственные вещества и их метаболиты с молекулярной массой не более 5 кДа. 4-10% поверх-ности капилляров почечных клубочков занято порами диаметром 2-4 нм. Интенси

Наши рекомендации