Биология – наука, изучающая закономерности возникновения и развития жизни на Земле.
ВВЕДЕНИЕ
Термин «биология» впервые был предложен французским ученым Ж.Б. Ламарком в 1802 году. Этот термин состоит из двух слов греческого происхождения: bios – жизнь; logos – учение. Таким образом, биология – это учение о жизни.
Биология – наука, изучающая закономерности возникновения и развития жизни на Земле.
Что же такое «жизнь»?
Впервые научное определение жизни было дано Ф. Энгельсом в 1878 году:
«Жизнь – это есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных этих тел».
«...жизнь – это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей средой, причем с прекращением этого обмена прекращается и жизнь».
Из определения жизни, данного Ф. Энгельсом, вытекают три положения:
1. Материальным субстратом (носителем) жизни являются белковые тела (под "белковым телом" он понимал не белки, а сложные химические образования).
2. Жизнь рассматривается как особая форма движения материи, которая заключается в обмене веществ.
3. Подчеркивается неразрывная связь живых существ с окружающей средой.
Определение жизни Энгельса не утратило своей актуальности и по сей день. Однако за период времени, прошедший с тех пор, учеными было сделано много открытий в области биологии и других наук, которые позволили глубже понять сущность жизни. В частности, удалось уточнить субстрат жизни. Сегодня под материальным носителем (субстратом) жизни понимают комплекс, состоящий из двух биополимеров: белков и нуклеиновых кислот.
С точки зрения кибернетики, живые организмы рассматриваются как открытые саморегулирующиеся системы, которые обмениваются с окружающей средой тремя потоками: вещества, энергии и информации.
Для характеристики живых организмов как открытых систем используется 2-й закон термодинамики, согласно которому в неживой природе разнообразные процессы идут всегда в одном направлении – все виды энергии переходят в конечном итоге в тепловую, которая равномерно распределяется между всеми телами, т.е. происходит увеличение энтропии. Поэтому энтропию рассматривают как меру упорядоченности (структурированности) живых систем.
Все живые организмы имеют низкую энтропию, так как обладают высокой структурированностью на протяжении всей жизни. Снижение энтропии в живых организмах достигается за счет постоянного извлечения энергии из окружающей среды. При этом энтропия в окружающей среде повышается.
Академик В.И. Вернадский рассматривал жизнь как явление биосферное: «Вне биосферы мы жизнь научно не знаем и ее проявления научно не видим».
Профессор М.М. Камшилов, основываясь на учении Вернадского, характеризует жизнь как биотический круговорот веществ, а живые организмы выступают в качестве отдельных звеньев этого круговорота.
Свойства жизни (фундаментальные):
· самообновление;
· самовоспроизведение;
· саморегуляция.
На этих трех свойствах основаны все проявления жизни:
· обмен веществ и энергии;
· строгая упорядоченность биохимических реакций во времени и пространстве;
· структурированность живых объектов;
· раздражимость – способность давать ответную реакцию на действие факторов внешней среды;
· размножение;
· гомеостаз;
· наследственность и изменчивость;
· индивидуальное и филогенетическое развитие;
· дискретность и целостность.
Уровни организации жизни
Несмотря на огромное многообразие форм проявлений жизни, ученые выделяют несколько уровней ее организации. Каждый уровень организации жизни характеризуется специфическими элементарными структурами и специфическими элементарными явлениями.
Клеточный уровень
Элементарной структурой является клетка, а элементарными явлениями – реакции клеточного обмена веществ.
Онтогенетический уровень
Элементарной структурной единицей является отдельная особь, или организм. Организм рассматривается на протяжении всего периода его существования (онтогенеза).
Элементарное специфическое явление – процесс реализации наследственной информации, закодированной в молекулах ДНК, в признаки и свойства отдельной особи, протекающий в определенных условиях окружающей среды (процесс превращения генотипа в фенотип).
Биогеоценотический уровень
Элементарной специфической единицей этого уровня является биогеоценоз – исторически сложившееся на определенной территории сообщество животных и растительных организмов, тесно взаимодействующее с окружающей его средой.
Элементарные специфические явления – круговорот веществ и превращение энергии в биогеоценозах.
Г Е Н Е Т И К А
Генный уровень
Наименьшей (элементарной) единицей наследственного материала является ген.
Хромосомный уровень
Все гены в клетке объединены в группы и располагаются в хромосомах в линейном порядке. Каждая хромосома уникальна по набору входящих в нее генов. В состав хромосом входят ДНК, белки (гистоновые и негистоновые), РНК, полисахариды, липиды и ионы металлов.
Хромосомный уровень в эукариотических клетках обеспечивает характер функционирования отдельных генов, тип их наследования и регуляцию их активности. Он позволяет закономерно воспроизводить и передавать наследственную информацию в процессе деления клетки.
Геномный уровень
Геном – совокупность всех генов, находящихся в гаплоидном наборе хромосом. При оплодотворении два генома родительских гамет сливаются и образуют генотип.
Генотип –совокупность всех генов, заключенных в диплоидном наборе хромосом, или кариотипе. Кариотип – полный набор хромосом, характеризующийся у каждого вида их строго определенным числом и строением.
Геномный уровень отличается высокой стабильностью. Он обеспечивает сложную систему взаимодействия генов. Результатом взаимодействия генов друг с другом и с факторами внешней среды является фенотип.
Особенности строения генов
Процессинг и трансляция.
Транскрипция
Транскрипция –процесс переписывания информации с молекулы ДНК на и-РНК. Протекает в ядре.
Молекула ДНК состоит из двух спирально закрученных нитей. Каждая нить представлена последовательностью нуклеотидов, а каждый нуклеотид состоит из углевода (пентозы), азотистого основания и остатка фосфорной кислоты.
Каждая нить молекулы ДНК имеет два конца – гидроксильный (3¢) и фосфатный (5¢). Нити расположены по отношению друг к другу антипараллельно.
Синтез и-РНК в клетке всегда идет от фосфатного конца к гидроксильному. Поэтому матрицей для транскрипции служит одна нить ДНК, обращенная к синтезирующему ферменту своим гидроксильным концом; она называется кодогенной, или информативной (а другая нить, соответственно, некодогенной, или неинформативной).
Транскрипция делится на три периода:
· инициация,
· элонгация,
· терминация.
Инициация –
начало синтеза и-РНК.
Синтез и-РНК осуществляется при помощи фермента – РНК-полимеразы. У прокариот имеется только один вид этого фермента, у эукариот – пять видов. Сущность инициации состоит в том, что фермент РНК-полимераза отыскивает в молекуле ДНК стартовую область – промотор и прикрепляется к ней. Это происходит в течение 15-20 секунд.
Элонгация –
синтез молекулы и-РНК из свободных нуклеотидов по принципу комплементарности: аденину соответствует урацил, а цитозину – гуанин. За 1 секунду выстраивается около 50 нуклеотидов. Синтез и-РНК одновременно протекает в нескольких участках молекулы ДНК. Образующиеся фрагменты называются транскриптоны. В последующем они объединяются.
Терминация –
завершение синтеза и-РНК.
Происходит тогда, когда РНК-полимераза встречается с особым участком молекулы ДНК – терминатором.
У прокариот в роли терминатора выступают участки молекулы ДНК, имеющие «симметричное» строение – они одинаково читаются в обе стороны от центра. Такие участки называются палиндромами. Фрагмент и-РНК, синтезированный на таком участке, в последующем складывается вдвое в виде шпильки. Образование "шпильки" является сигналом для завершения синтеза и-РНК. У эукариот "шпильки" не образуются. Вероятно, терминация у них протекает иначе.
Процессинг
Процессинг включает целый ряд преобразований и-РНК, необходимых для ее нормального функционирования:
1. Образование колпачка (КЭПа) на фосфатном конце.
Колпачок – это трифосфонуклеозид, содержащий гуанин. С помощью колпачка и-РНК отыскивает в цитоплазме малую субъединицу рибосомы.
2. Метилирование азотистых оснований.
3. Удаление части нуклеотидов на гидроксильном конце.
4. Присоединение на гидроксильном конце poli-А (100-200 остатков адениловой кислоты). Это образование выполняет стабилизирующую функцию и обеспечивает транспорт и-РНК из ядра в цитоплазму.
5. Сплайсинг – процесс удаления интронов и сшивания экзонов.
Ядерная и-РНК является точной матрицей молекулы ДНК. Она содержит как экзоны, так и интроны, поэтому называется незрелой, или юной. После прохождения сплайсинга она становится зрелой.
Сплайсинг присущ только эукариотам. Возможен также альтернативный сплайсинг: из одной и той же ядерной (незрелой) и-РНК вырезаются разные участки, в результате чего образуются разные зрелые и-РНК.
Зрелая и-РНК имеет следующий вид:
5¢ 3¢
КЭП – 1 – АУГ – 2 – 3 – 4 – poli-A
Здесь КЭП – "колпачок", 1 – лидирующий участок, АУГ – стартовый кодон, 2 – экзоны (их может быть много), 3 – кодон-терминатор, 4 – трейлер, poli-А – 100-200 остатков адениловой кислоты.
Лидирующий участок взаимодействует в последующем с рибосомальной РНК, а трейлер определяет местоположение и-РНК в цитоплазме и продолжительность ее функционирования.
Такая и-РНК выходит из ядра в цитоплазму, где осуществляется следующий этап – трансляция.
Трансляция
Трансляция –это процесс считывания информации с молекулы и-РНК на молекулу белка. Подобно транскрипции, трансляция протекает в три стадии:
· инициация,
· элонгация,
· терминация.
Инициация
И-РНК своим кэпированным (фосфатным) концом отыскивает малую субъединицу рибосомы. Лидирующая последовательность соединяется с рибосомальной РНК. При этом стартовый кодон АУГ попадает в недостроенный пептидильный (П) участок рибосомы. (Как известно, в рибосоме имеется два активных участка: П – пептидильный и А – аминоацильный.) Далее к стартовому кодону присоединяется т-РНК, несущая аминокислоту метионин. Только после этого субъединицы рибосомы объединяются, и на этом инициация заканчивается.
Элонгация
Заключается в синтезе полипептида из свободных аминокислот, которые доставляются транспортными РНК. Аминокислота обязательно сначала должна попасть в аминоацильный центр – «центр узнавания». Скорость присоединения аминокислот у прокариот и эукариот разная: за одну секунду присоединяется две аминокислоты у эукариот и 16-17 – у прокариот.
Терминация
Терминация наступает тогда, когда в аминоацильный центр поступает один из трех кодонов-терминаторов – УАА, УАГ, УГА. Таким триплетам не соответствует ни одна аминокислота, поэтому они называются еще нонсенс-кодонами. К последней аминокислоте присоединяется вода, и карбоксильный конец полипептидной цепочки отсоединяется от рибосомы.
На этом синтез белка завершается.
Поскольку у про- и эукариот принципиальной разницы в механизме биосинтеза белка нет, то можно предположить, что данный механизм сформировался очень давно, еще до разделения клеток на два типа.
Следует также иметь в виду, что в синтезе белка принимает участие множество факторов инициации, элонгации, терминации–как белковой, так и небелковой природы.
Регуляция экспрессии генов
Регуляция генной активности в клетках может происходить на всех этапах экспрессии – от репликации ДНК до посттрансляционных процессов. Рассмотрим регуляцию на уровне транскрипции.
Впервые принцип регуляции на уровне транскрипции был установлен французскими учеными Ф. Жакобом и Ж. Моно в 1961 году. Свои исследования они проводили на кишечной палочке. Кишечная палочка при попадании в среду, содержащую молочный сахар лактозу, вырабатывает фермент лактазу.Если же лактозы нет, то фермент не вырабатывается. Каким же образом клетка управляет процессом синтеза лактазы? Ответ на этот вопрос дает предложенная Жакобом и Моно модель оперона. Оперономназывается функциональная система, состоящая из структурных и регуляторных генов.
В приведенной ниже схеме lac-оперона Р – ген-регулятор; П – промотор; О – ген-оператор; Z, Y, A – структурные гены, причем ген Z отвечает за выработку фермента лактазы, ген Y кодирует фермент, осуществляющий активный транспорт лактозы в клетку, а ген А хотя и находится здесь, однако никакого отношения к расщеплению лактозы не имеет.
Ген-регулятор кодирует синтез белка-репрессора. Репрессор в химическом отношении очень активен и поэтому в свободном состоянии не существует, он обязательно должен вступить с чем-нибудь в связь. Если в окружающей среде нет лактозы, то репрессор вступает в связь с оператором, блокируя его. В этом случае РНК-полимераза не может прикрепиться к промотору (т.к. мешает репрессор). Без фермента РНК-полимеразы не происходит синтез и-РНК на структурных генах и, следовательно, на рибосомах не идет синтез фермента лактазы.
Если же в окружающей среде появляется лактоза, то репрессор связывается с ней и освобождает ген-оператор. При отсутствии репрессора в области гена-оператора фермент РНК-полимераза взаимодействует с промотором и осуществляет синтез и-РНК на структурных генах. Далее и-РНК поступает на рибосомы, где осуществляется синтез фермента лактазы. Последняя будет расщеплять молочный сахар лактозу. Такое состояние в клетке будет длиться до тех пор, пока не исчезнет лактоза. После этого репрессор снова связывается с оператором и тем самым останавливает процесс синтеза фермента лактазы.
Данный принцип регуляции называется принципом индукции. Индуктором в данном случае является молочный сахар – лактоза, т.к. ее появление ведет к запуску синтеза фермента.
Возможен и другой принцип регуляции синтеза белка – принцип репрессии. Он также имеет место у кишечной палочки. В этом случае появление продуктов реакции не запускает, а тормозит процесс синтеза фермента.
Исходно белок-репрессор находится в неактивной форме, поэтому он ни с чем не вступает в связь. Оператор свободен, и РНК-полимераза производит синтез и-РНК на структурных генах. Далее и-РНК поступает на рибосомы, где синтезируются соответствующие ферменты. Ферменты расщепляют субстрат до определенных продуктов, которые в свою очередь активируют репрессор (взаимодействуя с ним). Активированный репрессор вступает в связь с оператором, блокируя его. Нахождение репрессора в области оператора ведет к остановке процесса транскрипции на структурных генах и, соответственно, к прекращению синтеза ферментов на рибосомах. Необходимо отметить, что активация репрессора происходит только тогда, когда продуктов реакции накопится определенное количество (достаточно большое!).
По такому принципу в кишечной палочке функционируют два оперона:
· his-оперон, содержащий 9 структурных генов и регулирующий синтез аминокислоты гистидин;
· trip-оперон, содержащий 5 структурных генов и регулирующий синтез аминокислоты триптофан.
У эукариот принцип оперонной регуляции не обнаружен. Активность каждого гена у них регулируется несколькими генами-регуляторами, кодирующими, соответственно, несколько регуляторных белков. Эти белки связываются с определенными участками в молекуле ДНК. Один из таких участков находится перед промотором и называется препромоторным элементом; другие области лежат вдали от промотора и носят названия энхансеров(усилителей) и глушителей. В результате связывания регуляторных белков с этими участками происходит включение и выключение структурных генов.
Система выработки регуляторных белков – «многоэтажная». Главные регуляторные белки отвечают за выработку второстепенных. Важная роль в регуляторных процессах принадлежит также гормонам (часто они являются индукторами транскрипции) и белкам гистоновой природы.
Разновидности генов
Наряду с приведенной ранее функциональной классификацией генов существуют и другие их разновидности: псевдогены, онкогены и мобильные гены.
Псевдогены (ложные гены) – нуклеотидные последовательности в молекуле ДНК, сходные по строению с известными генами, но утратившие функциональную активность.
Онкогены – нуклеотидные последовательности в молекуле ДНК, присутствующие в хромосомах нормальных клеток, способные активизироваться под влиянием факторов внешней среды и продуцировать белки, вызывающие рост опухолей.
Мобильные (прыгающие) гены – гены, не имеющие постоянной локализации не только в хромосоме, но и в пределах хромосомного набора клетки. Понятно, что перемещения генов влияют на их экспрессию – ранее не активные гены могут активизироваться, и наоборот. Некоторые ученые считают, что эти гены играют важную роль в эволюции. Видимо, возникновение таким путем отдельных видов (в результате переноса информации от вида к виду) действительно возможно.
В последние десятилетия в генетике появилось еще одно новое понятие – «семейство генов», или «мультигенное семейство». Это группа генов, имеющих сходное строение, общее происхождение и выполняющих сходные функции. Число генов в разных семействах может колебаться от нескольких единиц до нескольких тысяч.
У человека имеются семейства генов, кодирующие
· α- и b- глобиновые белки гемоглобина;
· иммуноглобулины;
· актины и миозины;
· белки, определяющие тканевую несовместимость;
· гистоновые белки.
Организация генов мультигенных семейств может быть разной. Так, семейства актиновых и миозиновых генов разбросаны по всему геному. Семейства генов, кодирующих a- и b- глобиновые белки, сосредоточены в одной хромосоме и образуютгенные кластеры (так называют семейства генов, расположенных в одной хромосоме).
Генные кластеры возникли в результате дупликации (удвоения) отдельных генов. Таким образом, возникновение генных кластеров есть отражение эволюционного процесса.
Генотип и фенотип.
ВЗАИМОДЕЙСТВИЕ ГЕНОВ
Генотип – это не простая сумма генов, а сложная система взаимодействующих между собой дискретных единиц наследственной информации. Так, у крупного рогатого скота признак окраски шерсти контролируется 12 парами генов, у мухи дрозофилы признак окраски глаз – 20 парами генов. Даже в самом простом варианте в определении признака участвуют как минимум два гена.
Наряду с функциональной классификацией генов они подразделяются еще на аллельные и неаллельные.
Аллельными называются гены, которые определяют контрастирующие (альтернативные) свойства одного признака и расположены в гомологичных хромосомах в одном и том же локусе.
Примеры контрастирующих свойств некоторых признаков человека.
------------------------------------------------------------------------------------------------
Признак Контрастирующие свойства
---------------------------------------------------------------------------------------------------
Цвет глаз карие, голубые
Разрез глаз прямой, косой
Размеры глаз большие, маленькие
Строение кисти пятипалость, шестипалость
Цвет кожи смуглый, белый
Преобладающая рука правая, левая
--------------------------------------------------------------------------------------------------
Аллельные гены принято обозначать одной буквой латинского алфавита: А, а.
Неаллельные гены определяют разные признаки, расположены в разных (негомологичных) хромосомах или в разных локусах одной хромосомы. Они обозначаются разными буквами латинского алфавита: А, В, С или а, b, c.
Взаимодействовать между собой могут как аллельные, так и неаллельные гены.
Полное доминирование
При полном доминировании действие одного гена (одного аллеля) из аллельной пары полностью скрывает присутствие в генотипе другого гена (аллеля). Фенотипически проявляемый ген называется доминантным и обозначается – А;подавляемый ген называется рецессивным и обозначается – а.
Впервые это явление открыто Г. Менделем в опытах на горохе. Признаки, подчиняющиеся законам Менделя, называются менделирующими.
Г. Мендель сформулировал три закона:
I – закон единообразия;
II – закон расщепления;
III – закон независимого наследования (расщепления).
Два первых закона относятся к моногибридному скрещиванию, третий - к ди- и полигибридному скрещиванию.
Неполное доминирование
Неполное доминирование имеет место в том случае, когда доминантный ген (аллель) не полностью скрывает присутствие в генотипе рецессивного гена (аллеля), и у гетерозигот наблюдается промежуточный характер наследования признака.
Пример: окраска цветков у ночной красавицы. Доминантные гомозиготные растения (АА) имеют красные цветки, рецессивные гомозиготные (аа) – белые, а гетерозиготные (Аа) – розовые.
Пример у человека – серповидноклеточная анемия, в основе которой лежит мутация гена, приводящая к замене в белке гемоглобина одной из 287
аминокислот – валина – на глутаминовую кислоту. В результате меняется строение гемоглобина и эритроциты приобретают форму серпа, что ведет к кислородной недостаточности. Гомозиготные организмы погибают в раннем возрасте, а гетерозиготы жизнеспособны, но страдают одышкой при физической нагрузке.
Сверхдоминирование
Сверхдоминирование имеет место в том случае, когда фенотипическое проявление доминантного гена в гетерозиготном состоянии сильнее, чем в гомозиготном:
Aa > AA.
Пример – гетерозис, или явление гибридной силы, когда гибриды первого поколения обладают резко выраженными фенотипическими признаками (в последующих поколениях проявление этих признаков ослабевает).
Кодоминирование
Кодоминирование – проявление в гетерозиготном состоянии признаков, кодируемых обоими аллельными генами.
Примеры: гены нормального и серповидноклеточного гемоглобина; наследование у человека IV группы крови (AB). В то же время группы крови являются примером множественного аллелизма.
Множественный аллелизм – наличие в генофонде популяции более двух аллельных генов.
Пример. Окраска шерсти у кроликов определяется четырьмя аллельными генами: A, ach, ah, a.
A – ген, определяющий черную окраску (дикий тип);
ach – ген шиншилловой окраски;
ah – ген гималайской окраски;
a – ген белой окраски.
Характер их взаимодействия: A > ach > ah > a.
Группы крови человека по системе АВО кодируются тремя аллельными генами: IA, IB, I0.
Группа крови Генотип
0 (I) I0 I0
А (II) IA I0, IA IA ;
B (III) IB I0, IB IB;
AB (IV) IA IB (фенотипически проявляется действие обоих аллельных генов – явление кодоминирования).
Межаллельная комплементация
Межаллельная комплементация – вид взаимодействия аллельных генов, при котором возможно формирование нормального признака у организма, гетерозиготного по двум мутантным аллелям этого гена.
Пример: D – ген, кодирующий синтез белка с четвертичной структурой (например, глобин в гемоглобине). Четвертичная структура состоит из нескольких полипептидных цепей. Мутантные гены – D¢ и D¢¢ – определяют синтез измененных белков (каждый своего). Однако при объединении этих цепей в четвертичной структуре образуется белок с нормальными свойствами:
D¢ + D¢¢ = D.
Аллельное исключение
Аллельное исключение – вид взаимодействия аллельных генов, при котором в разных клетках одного и того же организма фенотипически проявляются разные аллели. В результате возникает мозаицизм.
Пример: фенотипическое проявление аллельных генов, расположенных в Х-хромосоме женского организма. В норме в каждой клетке женщины из двух Х-хромосом функционирует только одна. Другая находится в плотном спирализованном состоянии (инактивированном) и образует «тельце Барра». При этом в одних клетках будет функционировать Х-хромосома, полученная от матери и несущая один аллельный ген (А), а в других клетках - хромосома, полученная от отца и содержащая другой аллельный ген (а).
Эпистаз
Эпистаз - такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары подавляется действием гена из другой аллельной пары.
Различают две формы эпистаза – доминантный и рецессивный. При доминантном эпистазе в качестве гена-подавителя (супрессора) выступает доминантный ген, при рецессивном эпистазе – рецессивный ген.
Пример доминантного эпистаза – наследование окраски оперения у кур. Взаимодействуют две пары неаллельных генов:
С – ген, определяющий окраску оперения (обычно пеструю),
с – ген, не определяющий окраску оперения,
I – ген, подавляющий окраску,
i – ген, не подавляющий окраску.
Варианты расщепления в F2 : 12:3:1, 13:3.
У человека примером доминантного эпистаза являются ферментопатии (энзимопатии) – заболевания, в основе которых лежит недостаточная выработка того или иного фермента.
Пример рецессивного эпистаза – так называемый «бомбейский феномен»: в семье у родителей, где мать имела группу крови О, а отец – группу крови А, родились две дочери, из которых одна имела группу крови АВ. Ученые предположили, что у матери в генотипе был ген IB, однако его действие было подавлено двумя рецессивными эпистатическими генами dd.
Полимерия
Полимерия - такой вид взаимодействия неаллельных генов, при котором несколько неаллельных генов определяют один и тот же признак, усиливая его проявление. Это явление противоположно плейотропии. По типу полимерии обычно наследуются количественные признаки, чем и обусловлено большое разнообразие их проявления в природе.
Например, окраска зерен у пшеницы определяется двумя парами неаллельных генов:
A1 – ген, определяющий красную окраску;
a1 – ген, не определяющий красную окраску;
A2 – ген, определяющий красную окраску;
a2 – ген, не определяющий красную окраску.
A1 A1 A2 A2 – генотип растений с красной окраской зерен;
a1 a1 a2 a2 - генотип растений с белой окраской зерен.
Расщепление в F2: 15:1 или 1:4:6:4:1.
У человека по типу полимерии наследуются такие признаки, как рост, цвет волос, цвет кожи, величина артериального давления, умственные способности.
Эффект положения
Эффект положения – вид взаимодействия неаллельных генов, обусловленный местом положения гена в генотипе.
Пример – наследование белка Rh-фактора (резус-фактора). У 85% европейцев резус-фактор имеется (Rh+), у 15% – его нет (Rh-). Определяется резус-фактор тремя доминантными генами (С, D, E), расположенными в хромосоме рядом друг с другом.
Два человека с одинаковым генотипом CcDDEe будут иметь разные фенотипы в зависимости от варианта расположения аллельных генов в паре гомологичных хромосом: в варианте А – много антигена Е, но мало антигена С; в варианте В – мало антигена Е, но много антигена С.
C c C c
D D D D
E e e E
Вариант А Вариант В
Регуляторные взаимодействия
Регуляторными называются взаимодействия, имеющие место в ходе регуляции экспрессии генов на уровне транскрипции (т.е. взаимодействия регуляторных и структурных генов).
Генетика пола
В природе существует три типа определения пола:
· прогамный,
· эпигамный,
· сингамный.
Прогамный – пол можно определить еще до оплодотворения по размерам яйцеклетки: если она крупная, содержит много питательных веществ – из нее разовьется особь женского пола; если мелкая – особь мужского пола.
Такой тип определения пола имеет место у коловраток (круглые черви), примитивных кольчатых червей, тлей.
Эпигамный – определение пола происходит после оплодотворения под влиянием условий среды.
Этот тип исключительно редок. Примером является морской червь Bonellia viridis. Самки этого вида имеют длинный хоботок. Если личинка развивается на хоботке, то она даст особь мужского пола; если самостоятельно, вне материнского организма – будет особь женского пола. Определяющим фактором в данном случае является влияние гормонов материнского организма.
Сингамный – пол определяется в момент оплодотворения и зависит от набора хромосом. Это самый распространенный в природе тип.
Кариотип любого организма содержит две группы хромосом: аутосомы (определяют строение тела) и гетерохромосомы (определяют пол). Гетерохромосомы принято обозначать двумя буквами латинского алфавита: X и Y. У большинства видов животных имеется одна пара гетерохромосом, которая определяет половую принадлежность организма.
Сцепленных с полом
У человека известно несколько сотен признаков, гены которых расположены в половых хромосомах. Наследование этих признаков имеет свои особенности.
У млекопитающих и у человека половые хромосомы X и Y имеют небольшой гомологичный участок (I), которым они конъюгируют, и два негомологичных: II – негомологичный в Х-хромосоме и III – негомологичный в Y-хромосоме:
II III
I
X Y
Пластидная наследственность
Установлено, что пестролистность (наличие на листе белых участков, лишенных хлорофилла) у некоторых растений обусловлена генами, находящимися в пластидах.
У хламидомонады (одноклеточная водоросль) ген, определяющий устойчивость к стрептомицину, также расположен в пластидах.
ИЗМЕНЧИВОСТЬ
Изменчивость – свойство живых организмов изменять как саму наследственную информацию, полученную от родителей, так и процесс ее реализации в ходе онтогенеза.
Выделяют три вида изменчивости:
· фенотипическая,
· онтогенетическая,
· генотипическая.
Фенотипическая, или модификационная изменчивость – изменение фенотипа в ответ на действие факторов внешней среды. Этот вид изменчивости был выделен еще Ч. Дарвином и назван им «определенная». Приобретенные в ходе онтогенеза признаки по наследству не передаются. Пределы изменчивости признака называются нормой реакции. Норма реакции передается по наследству. Она может быть широкая и узкая. (Приведите примеры.)
Для эволюционного процесса фенотипическая изменчивость имеет большое значение, т.к. естественный отбор особей в природе идет по фенотипу.
Онтогенетическая изменчивость– закономерное изменение генотипа и фенотипа в ходе онтогенеза.
Изменение фенотипа организма человека в процессе роста, появление вторичных половых признаков – это примеры онтогенетической изменчивости.
Закономерное изменение генотипа в ходе онтогенеза обнаружено недавно. Правда, известно таких примеров немного. Так, белки иммуноглобулины у мышей состоят из двух фракций: V (вариабельная) и С (константная). У эмбрионов мышей кодирующие их гены расположены на довольно большом расстоянии друг от друга:
V C
ДНК
У взрослых мышей эти гены соединены и работают как один:
V + C
ДНК
Генотипическая изменчивость обусловлена изменением генотипа. Ч. Дарвин этот вид изменчивости называл “неопределенной”. Это наследуемая изменчивость (передается по наследству).
Генотипическая изменчивость подразделяется на два вида: комбинативную и мутационную.
Комбинативная изменчивостьобусловлена перекомбинацией имеющегося генетического материала.
В природе имеется три источника комбинативной изменчивости:
1) независимое расхождение хромосом в мейозе (число комбинаций составляет
2n, где n – число хромосом в гаплоидном наборе);
2) кроссинговер (обмен гомологичными участками между гомологичными
хромосомами);
3) случайное комбинирование хромосом во время оплодотворения.
Все это приводит к огромному разнообразию генотипов и фенотипов, что, в свою очередь, обеспечивает высокую приспособляемость видов.
В основе мутационнойизменчивости лежит перестройка генетического аппарата.
Классификация мутаций
1) По характеру проявления в гетерозиготном состоянии – доминантные (проявляются в гетерозиготном состоянии) и рецессивные (проявляются только в гомозиготном состоянии).
2) В зависимости от причины – спонтанные (без видимых причин) и индуцированные (вызванные направленным действием какого-то фактора).
3) В зависимости от локализации в клетке – ядерные и цитоплазматические.
4) По отношению к возможности наследования – г