Тема: Переваривание и всасывание липидов. Транспорт липидов в организме.
Кафедра биохимии
КУРС ЛЕКЦИЙ
ПО ОБЩЕЙ БИОХИМИИ
для студентов 2 курса
лечебно-профилактического
факультета
Модуль 4. Биохимия липидов
Автор: к.б.н., доцент кафедры биохимии Гаврилов И.В.
Екатеринбург,
2013г
ЛЕКЦИЯ
Тема: Переваривание и всасывание липидов. Транспорт липидов в организме.
Обмен липопротеидов. Дислипопротеидемии.
Липиды - это разнообразная по строению группа органических веществ, которые объединены общим свойством - растворимостью в неполярных растворителях.
КЛАССИФИКАЦИЯ ЛИПИДОВ
Липиды по способности к гидролизу делят на омыляемые (двух и более компонентные) и неомыляемые (однокомпонентные).
Омыляемые липиды в щелочной среде гидролизуются с образованием мыл, они содержат в своем в составе жирные кислоты и спирты глицерин (глицеролипиды) или сфингозин (сфинголипиды). По количеству компонентов омыляемые липиды делятся на простые (состоят из 2 классов соединений) и сложные (состоят из 3 и более классов).
К простым липидам относятся:
1) воска (сложный эфир высшего одноатомного спирта и жирной кислоты);
2) триацилглицериды, диацилглицериды, моноацилглицериды (сложный эфир глицерина и жирных кислот). У человека весом в 70 кг ТГ около 10 кг.
3) церамиды (сложный эфир сфингозина и жирной кислоты С18-26) – лежат в основе сфинголипидов;
К сложным липидам относятся:
1) фосфолипиды (содержат фосфорную кислоту):
а) фосфоглицеролипиды (сложный эфир глицерина и 2 жирных кислот, содержит фосфорную кислоту и аминоспирт) - фосфатидилсерин, фосфатидилэтаноламин, фосфатидилхолин, фосфатидилинозитол, фосфатидилглицерол;
б) кардиолипины (2 фосфатидные кислоты, соединенные через глицерин);
в) плазмалогены (сложный эфир глицерина и жирной кислоты, содержит ненасыщенный одноатомный высший спирт, фосфорную кислоту и аминоспирт) – фосфатидальэтаноламины, фосфатидальсерины, фосфатидальхолины;
г) сфингомиелины (сложный эфир сфингозина и жирной кислоты С18-26, содержит фосфорную кислоту и аминоспирт - холин);
2) гликолипиды (производные сфингозина, содержащие углеводы):
а) цереброзиды (сложный эфир сфингозина и жирной кислоты С18-26, содержит гексозу: глюкозу или галактозу);
б) сульфатиды (сложный эфир сфингозина и жирной кислоты С18-26, содержит гексозу (глюкозу или галактозу) к которой присоединена в 3 положение серная кислота). Много в белом веществе;
в) ганглиозиды (сложный эфир сфингозина и жирной кислоты С18-26, содержит олигосахарид из гексоз и сиаловых кислот). Находятся в ганглиозных клетках;
К неомыляемым липидам относят:
1. стероиды;
2. жирные кислоты (структурный компонент омыляемых липидов),
3. витамины А, Д, Е, К;
4. терпены (углеводороды, спирты, альдегиды и кетоны с несколькими звеньями изопрена).
ПЕРЕВАРИВАНИЕ ЛИПИДОВ
Переваривание – это гидролиз пищевых веществ до их ассимилируемых форм.
Лишь 40-50% пищевых липидов расщепляется полностью, от 3% до 10% пищевых липидов всасываются в неизмененном виде.
Так как липиды не растворимы в воде, их переваривание и всасывание имеет свои особенности и протекает в несколько стадий:
1) Липиды твердой пищи при механическом воздействии и под влиянием ПАВ желчи смешиваются с пищеварительными соками с образованием эмульсии (масло в воде). Образование эмульсии необходимо для увеличения площади действия ферментов, т.к. они работают только в водной фазе. Липиды жидкой пищи (молоко, бульон и т.д.) поступают в организм сразу в виде эмульсии;
2) Под действием липаз пищеварительных соков происходит гидролиз липидов эмульсии с образованием водорастворимых веществ и более простых липидов;
3) Выделенные из эмульсии водорастворимые вещества всасываются и поступают в кровь. Выделенные из эмульсии более простые липиды, соединяясь с компонентами желчи, образуют мицеллы;
4) Мицеллы обеспечивают всасывание липидов в клетки эндотелия кишечника.
Ротовая полость
В ротовой полости происходит механическое измельчение твердой пищи и смачивание ее слюной (рН=6,8).
У грудных детей здесь начинается гидролиз ТГ с короткими и средними жирными кислотами, которые поступают с жидкой пищей в виде эмульсии. Гидролиз осуществляет лингвальная триглицеридлипаза («липаза языка», ТГЛ), которую секретируют железы Эбнера, находящиеся на дорсальной поверхности языка.
Желудок
Так как «липаза языка» действует в диапазоне 2-7,5 рН, она может функционировать в желудке в течение 1-2 часов, расщепляя до 30% триглицеридов с короткими жирными кислотами. У грудных детей и детей младшего возраста она активно гидролизует ТГ молока, которые содержат в основном жирные кислоты с короткой и средней длиной цепей (4—12 С). У взрослых людей вклад «липазы языка» в переваривание ТГ незначителен.
В главных клетках желудка вырабатывается желудочная липаза, которая активна при нейтральном значении рН, характерном для желудочного сока детей грудного и младшего возраста, и не активна у взрослых (рН желудочного сока ~1,5). Эта липаза гидролизует ТГ, отщепляя, в основном, жирные кислоты у третьего атома углерода глицерола. Образующиеся в желудке ЖК и МГ далее участвуют в эмульгировании липидов в двенадцатиперстной кишке.
Тонкая кишка
Основной процесс переваривания липидов происходит в тонкой кишке.
1. Эмульгированиелипидов (смешивание липидов с водой) происходит в тонкой кишке под действием желчи. Желчь синтезируется в печени, концентрируется в желчном пузыре и после приёма жирной пищи выделяется в просвет двенадцатиперстной кишки (500-1500 мл/сут).
Жёлчь это вязкая жёлто-зелёная жидкость, имеет рН=7,3-8.0, содержит Н2О – 87-97%, органические вещества (желчные кислоты – 310 ммоль/л (10,3-91,4 г/л), жирные кислоты – 1,4-3,2 г/л, пигменты желчные – 3,2 ммоль/л (5,3-9,8 г/л), холестерин – 25 ммоль/л (0,6-2,6) г/л, фосфолипиды – 8 ммоль/л) и минеральные компоненты (натрий 130-145 ммоль/л, хлор 75-100 ммоль/л, НСО3- 10-28 ммоль/л, калий 5-9 ммоль/л). Нарушение соотношение компонентов желчи приводит к образованию камней.
Жёлчные кислоты (производные холановой кислоты) синтезируются в печени из холестерина (холиевая, и хенодезоксихолиевая кислоты) и образуются в кишечнике (дезоксихолиевая, литохолиевая, и д.р. около 20) из холиевой и хенодезоксихолиевой кислот под действием микроорганизмов.
В желчи желчные кислоты присутствуют в основном в виде конъюгатов с глицином (66-80%) и таурином (20-34%), образуя парные желчные кислоты: таурохолевую, гликохолевую и д.р.
Соли жёлчных кислот, мыла, фосфолипиды, белки и щелочная среда желчи действуют как детергенты (ПАВ), они снижают поверхностное натяжение липидных капель, в результате крупные капли распадаются на множество мелких, т.е. происходит эмульгирование. Эмульгированию также способствует перистальтика кишечника и выделяющийся, при взаимодействии химуса и бикарбонатов СО2: Н+ + НСО3- → Н2СО3 → Н2О + ↑СО2.
2. Гидролизтриглицеридов осуществляет панкреатическая липаза. Ее оптимум рН=8, она гидролизует ТГ преимущественно в положениях 1 и 3, с образованием 2 свободных жирных кислот и 2-моноацилглицерола (2-МГ). 2-МГ является хорошим эмульгатором.
28% 2-МГ под действием изомеразы превращается в 1-МГ. Большая часть 1-МГ гидролизуется панкреатической липазой до глицерина и жирной кислоты.
В поджелудочной железе панкреатическая липаза синтезируется вместе с белком колипазой. Колипаза образуется в неактивном виде и в кишечнике активируется трипсином путем частичного протеолиза. Колипаза своим гидрофобным доменом связывается с поверхностью липидной капли, а гидрофильным способствует максимальному приближению активного центра панкреатической липазы к ТГ, что ускоряет их гидролиз.
3. Гидролизлецитина происходит с участием фосфолипаз (ФЛ): А1, А2, С, D и лизофосфолипазы (лизоФЛ).
В результате действия этих четырех ферментов фосфолипиды расщепляются до свободных жирных кислот, глицерола, фосфорной кислоты и аминоспирта или его аналога, например, аминокислоты серина, однако часть фосфолипидов расщепляется при участии фосфолипазы А2 только до лизофосфолипидов и в таком виде может поступать в стенку кишечника.
ФЛ А2 активируется частичным протеолизом с участием трипсина и гидролизует лецитин до лизолецитина. Лизолецитин является хорошим эмульгатором. ЛизоФЛ гидролизует часть лизолецитина до глицерофосфохолина. Остальные фосфолипиды не гидролизуются.
4. Гидролизэфиров холестерина до холестерина и жирных кислот осуществляет холестеролэстераза, фермент поджелудочной железы и кишечного сока.
5. Мицеллообразование
Водонерастворимые продукты гидролиза (жирные кислоты с длинной цепью, 2-МГ, холестерол, лизолецитины, фосфолипиды) вместе с компонентами желчи (солями жёлчных кислот, ХС, ФЛ) образуют в просвете кишечника структуры, называемые смешанными мицеллами. Смешанные мицеллы построены таким образом, что гидрофобные части молекул обращены внутрь мицеллы (жирные кислоты, 2-МГ, 1-МГ), а гидрофильные (желчные кислоты, фосфолипиды, ХС) — наружу, поэтому мицеллы хорошо растворяются в водной фазе содержимого тонкой кишки. Стабильность мицелл обеспечивается в основном солями жёлчных кислот, а также моноглицеридами и лизофосфолипидами.
Регуляция переваривания
Пища стимулирует секрецию из клеток слизистой тонкой кишки в кровь холецистокинина (панкреозимин, пептидный гормон). Он вызывает выделение в просвет двенадцатиперстной кишки желчи из желчного пузыря и панкреатического сока из поджелудочной железы.
Кислый химус стимулирует секрецию из клеток слизистой тонкой кишки в кровь секретина (пептидный гормон). Секретин стимулирует секрецию бикарбоната (НСО3-) в сок поджелудочной железы.
ОБМЕН ЛИПИДОВ В ЭНТЕРОЦИТАХ
Липиды поступают в энтероциты как из просвета кишечника, так и из тканей. Большая часть липидов, поступивших в энтероцит, подвергается ресинтезу.
1. 1-МГ гидролизуется кишечной липазой до глицерина и жирной кислоты.
2. Короткоцепочечные жирные кислоты, ФЛ (кроме лецитина) и часть глицерина без изменений направляются из энтероцита в кровь.
3.Длинноцепочечные эндогенные и экзогенные жирные кислоты под действием ацил-КоА-синтетазы (тиокиназы) активируются, образуя Ацил~КоА:
RCOOH + HS-КоА + АТФ → Ацил~КоА + АМФ + ФФн
Обмен липопротеинов
Липопротеины (ЛП) – это надмолекулярные комплексы сферической формы, состоящие из липидов, белков и углеводов. ЛП имеют гидрофильную оболочку и гидрофобное ядро. В гидрофильную оболочку входят белки и амфифильные липиды - ФЛ, ХС. В гидрофобное ядро входят гидрофобные липиды - ТГ, эфиры ХС и т.д. ЛП хорошо растворимы в воде.
В организме синтезируются несколько видов ЛП, они отличаются химическим составом, образуются в разных местах и осуществляют транспорт липидов в различных направлениях.
ЛП разделяют с помощью:
1) электрофореза, по заряду и размеру, на α-ЛП, β-ЛП, пре-β-ЛП и ХМ;
2) центрифугирования, по плотности, на ЛПВП, ЛПНП, ЛППП, ЛПОНП и ХМ.
Соотношение и количество ЛП в крови зависит от времени суток и от питания. В постабсорбтивный период и при голодании в крови присутствуют только ЛПНП и ЛПВП.
Основные виды липопротеинов
Состав, % | ХМ | ЛПОНП (пре-β-ЛП) | ЛППП (пре-β-ЛП) | ЛПНП (β-ЛП) | ЛПВП (α-ЛП) |
Белки | |||||
ФЛ | |||||
ХС | |||||
ЭХС | |||||
ТГ | |||||
Плотность, г/мл | 0,92-0,98 | 0,96-1,00 | 0,96-1,00 | 1,00-1,06 | 1,06-1,21 |
Диаметр, нм | >120 | 30-100 | 30-100 | 21-100 | 7-15 |
Функции | Транспорт к тканям экзогенных липидов пищи | Транспорт к тканям эндогенных липидов печени | Транспорт к тканям эндогенных липидов печени | Транспорт ХС в ткани | Удаление избытка ХС из тканей Донор апо А, С, Е |
Место образования | энтероцит | гепатоцит | в крови из ЛПОНП | в крови из ЛППП | гепатоцит |
Апо | В-48, С-II, Е | В-100, С-II, Е | В-100, Е | В-100 | А-I С-II, Е, D |
Норма в крови | < 2,2 ммоль/л | 0,9- 1,9 ммоль/л |
Апобелки
Белки, входящие в состав ЛП, называются апопротеины (апобелки, апо). К наиболее распространенным апопротеинам относят: апо А-I, А-II, В-48, В-100, С-I, С-II, С-III, D, Е. Апобелки могут быть периферическими (гидрофильные: А-II, С-II, Е) и интегральными (имеют гидрофобный участок: В-48, В-100). Периферические апо переходят между ЛП, а интегральные – нет. Апопротеины выполняют несколько функций:
Апобелок | Функция | Место образования | Локализация |
А-I | Активатор ЛХАТ, образование ЭХС | печень | ЛПВП |
А-II | Активатор ЛХАТ, образование ЭХС | ЛПВП, ХМ | |
В-48 | Структурная (синтез ЛП), рецепторная (фагоцитоз ЛП) | энтероцит | ХМ |
В-100 | Структурная (синтез ЛП), рецепторная (фагоцитоз ЛП) | печень | ЛПОНП, ЛППП, ЛПНП |
С-I | Активатор ЛХАТ, образование ЭХС | Печень | ЛПВП, ЛПОНП |
С-II | Активатор ЛПЛ, стимулирует гидролиз ТГ в ЛП | Печень | ЛПВП→ ХМ, ЛПОНП |
С-III | Ингибитор ЛПЛ, ингибирует гидролиз ТГ в ЛП | Печень | ЛПВП → ХМ, ЛПОНП |
D | Перенос эфиров холестерина (БПЭХ) | Печень | ЛПВП |
Е | Рецепторная, фагоцитоз ЛП | печень | ЛПВП→ ХМ, ЛПОНП, ЛППП |
Ферменты транспорта липидов
Липопротеинлипаза(ЛПЛ) (КФ 3.1.1.34, ген LPL, около 40 дефектных аллелей) связана с гепарансульфатом, находящимся на поверхности эндотелиальных клеток капилляров кровеносных сосудов. Она гидролизует ТГ в составе ЛП до глицерина и 3 жирных кислот. При потере ТГ, ХМ превращаются в остаточные ХМ, а ЛПОНП повышают свою плотность до ЛППП и ЛПНП.
Апо С-II ЛП активирует ЛПЛ, а фосфолипиды ЛП участвуют в связывании ЛПЛ с поверхностью ЛП. Синтез ЛПЛ индуцируется инсулином. Апо С-III ингибирует ЛПЛ.
ЛПЛ синтезируется в клетках многих тканей: жировой, мышечной, в легких, селезёнке, клетках лактирующей молочной железы. Ее нет в печени. Изоферменты ЛПЛ разных тканей отличаются по значением Кm. В жировой ткани ЛПЛ имеет Кm в 10 раз больше, чем в миокарде, поэтому в жировая ткань поглощает жирные кислоты только при избытке ТГ в крови, а миокард – постоянно, даже при низкой концентрации ТГ в крови. Жирные кислоты в адипоцитах используются для синтеза ТГ, в миокарде как источник энергии.
Печёночная липаза находиться на поверхности гепатоцитов, она не действует на зрелые ХМ, а гидролизует ТГ в ЛППП.
Лецитин: холестерол-ацил-трансфераза (ЛХАТ) находиться в ЛПВП, она переносит ацил с лецитина на ХС с образование ЭХС и лизолецитина. Ее активируют апо А-I, А-II и С-I.
лецитин + ХС → лизолецитин + ЭХС
ЭХС погружается в ядро ЛПВП или переноситься с участием апо D на другие ЛП.
НОРМАЛЬНЫЕ ЗНАЧЕНИЯ
В соответствии c рекомендациями ASSMANN в настоящее время следующие значения холестерина ЛПВП могут быть предложены как основополагающие для оценки риска развития атеросклероза:
Благоприятный прогноз: | ||
Женщины | > 65 мг/дл | 1,7 ммоль/л |
Мужчины | > 55 мг/дл | 1,4 ммоль/л |
Стандартный риск: | ||
Женщины | 45 - 65 мг/дл | 1,2 - 1,7 ммоль/л |
Мужчины | 35 - 55 мг/дл | 0,9 - 1,4 ммоль/л |
Повышенный риск: | ||
Женщины | < 45 мг/дл | 1,2 ммоль/л |
Мужчины | < 35 мг/дл | 0,9 ммоль/л |
Холестерин ЛПНП: | ||
Подозрительный уровень | > 150 мг/дл | 3,87 ммоль/л |
Повышенный уровень | > 190 мг/дл | 4,90 ммоль/л |
ОБМЕН ХИЛОМИКРОНОВ
Липиды, ресинтезированные в энтероцитах, транспортируется тканям в составе ХМ.
· Образование ХМ начинается с синтеза апо В-48 на рибосомах. Апо В-48 и В-100 имеют общий ген. Если с гена копируется на мРНК только 48% информации, то с нее синтезируется апо В-48, если 100% - то с нее синтезируется апо В-100.
· С рибосом апо В-48 поступает в просвет ЭПР, где он гликозилируется. Затем в аппарате Гольджи апо В-48 окружается липидами и происходит формирование «незрелых», насцентных ХМ.
· Экзоцитозом насцентные ХМ выделяются в межклеточное пространство, поступают в лимфатические капилляры и по лимфатической системе, через главный грудной лимфатический проток попадают в кровь.
· В лимфе и крови с ЛПВП на насцентные ХМ переносятся апо Е и С-II, ХМ превращаются в «зрелые». ХМ имеют довольно большой размер, поэтому они придают плазме крови опалесцирующий, похожий на молоко, вид. Под действием ЛПЛ ТГ ХМ гидролизуются на жирные кислоты и глицерол. Основная масса жирных кислот проникает в ткань, а глицерол транспортируется с кровью в печень.
· Когда в ХМ количество ТГ снижается на 90%, они уменьшаются в размерах, а апо С-II переносится обратно на ЛПВП, «зрелые» ХМ превращаются в «остаточные» ремнантные ХМ. Ремнантные ХМ содержат в себе фосфолипиды, холестерол, жирорастворимые витамины и апо В-48 и Е.
· Через ЛПНП-рецептор (захват апо Е, В100, В48) ремнантные ХМ захватываются гепатоцитами. Путём эндоцитоза остаточные ХМ попадают внутрь клеток и перевариваются в лизосомах. ХМ исчезают из крови в течение нескольких часов.
ОБМЕН ЛПВП
ЛПВП выполняют 2 основные функции: они поставляют апо другим ЛП в крови и участвуют в так называемом «обратном транспорте ХС». ЛПВП синтезируются в печени и в небольшом количестве в тонком кишечнике в виде насцентных ЛПВП. Они имеют дисковидную форму, небольшой размер и содержат высокий процент белков и фосфолипидов. В печени в ЛПВП включаются апопротеины А, Е, С-II, ЛХАТ. В крови апо С-II и апо Е переносятся с ЛПВП на ХМ и ЛПОНП. насцентные ЛПВП практически не содержат ХС и ТГ и в крови обогащаются ХС, получая его из других ЛП и мембран клеток.
Для переноса ХС в ЛПВП существует сложный механизм. На поверхности ЛПВП находится фермент ЛХАТ — лецитин: холестерол-ацилтрансфераза. Этот фермент превращает ХС в ЭХС. Реакция активируется апо A-I, входящим в состав ЛПВП.
ЭХС перемещается внутрь ЛПВП. Таким образом, ЛПВП обогащаются ЭХС. ЛПВП увеличиваются в размерах, из дисковидных небольших частиц превращаются в частицы сферической формы, которые называют ЛПВП3, или «зрелые ЛПВП». ЛПВП3 частично обменивают ЭХС на ТГ, содержащиеся в ЛПОНП, ЛППП и ХМ. В этом переносе участвует «белок, переносящий эфиры холестерина» - апо D. Таким образом, часть ЭХС переносится на ЛПОНП, ЛППП, а ЛПВП3 за счёт накопления ТГ увеличиваются в размерах и превращаются в ЛПВП2.
Часть ЛПВП захватывается клетками печени, взаимодействуя со специфическими для ЛПВП рецепторами к апо А-1. На поверхности клеток печени ФЛ и ТГ ЛППП, ЛПВП2 гидролизуются печёночной липазой, что дестабилизирует структуру поверхности ЛП и способствует диффузии ХС в гепатоциты. ЛПВП2 в результате этого опять превращаются в ЛПВП3 и возвращаются в кровоток.
НАРУШЕНИЯ ЛПВП
Болезнь Тэнжи
Болеют аборигены острова Тэнжи. Наследственный дефект апо А, не синтезируются ЛПВП. Нарушается транспорт излишков ХС из тканей в печень. В крови низкий уровень ХС, ФЛ, много ТГ. Макрофаги фагоцитируют в тканях излишки ХС с образованием ксантом. Накопление ХС в печени, селезенке и других лимфоидных органах вызывает гепатоспленомегалию и лимфаденопатию. Может развиваться катаракта, полинейропатия и ренит. Миндалины из-за отложений ХС окрашены в оранжево-желтый цвет.
Список литературы
Берсенёв Алексей Вячеславович. Кандидатская диссертация: Трансплантация клеток эмбриональной печени и стволовых клеток костного мозга для коррекции дислипидемии и ранних стадий атерогенеза. М.: 2003.
ЛЕКЦИЯ № 13
Развитие жировой ткани
Жировая ткань развивается из мезенхимы с 30 недели эмбрионального развития. Мезенхимальная клетка превращается в липобласт, который в свою очередь, превращается в зрелую жировую клетку — адипоцит. Существует два периода активного увеличения количества адипоцитов: (1) период эмбрионального развития и (2) период полового созревания. В другие периоды жизни человека обычно размножения клеток-предшественников не происходит. Накопление жира идет только путем увеличения размеров уже существующих жировых клеток. Если количество жира в клетке достигает критической массы, клетки-предшественники получают сигнал, и начинают размножаться, давая рост новым жировым клеткам. У худого взрослого человека имеется около 35 миллиардов жировых клеток, у человека с выраженным ожирением до 125 миллиардов, то есть в 4 раза больше. Вновь образованные жировые клетки обратному развитию не подлежат, и сохраняются на всю жизнь. Если человек худеет, то они лишь уменьшаются в размерах. |
ХИМИЧЕСКИЙ СОСТАВ БЕЛОЙ ЖИРОВОЙ ТКАНИ
Жировая ткань содержит 65-85% ТГ, 22% воды, 5,8% белка, 15 ммоль/кг калия. Из жирных кислот 42—51% приходится на олеиновую, 22—31% - на пальмитиновую, 5—14% - на пальмитоолеиновую, 3—5 % - на миристиновую, 1—5 % - на линолевую кислоты.
Состав жировой ткани зависит от области тела, глубины слоя; он может также несколько отличаться у отдельных индивидуумов. Особенно подвергается изменениям содержание воды и белка. Чем глубже под поверхностью кожи жир расположен, тем больше он содержит насыщенных кислот. У новорожденных насыщенные жиры во всех слоях содержатся в одинаковом количестве.
ОСОБЕННОСТИ МЕТАБОЛИЗМА БЕЛОЙ ЖИРОВОЙ ТКАНИ
Энергетический обмен низкий, преимущественно анаэробный, ткань потребляет мало кислорода. Энергия АТФ в основном тратится на транспорт жирных кислот через клеточные мембраны (с участием карнитина).
Белковый обмен низкий, белки синтезируются адипоцитами преимущественно для собственных нужд. На экспорт в жировой ткани синтезируются лептин, белки острой фазы воспаления (α1-кислый гликопротеин, гаптоглобин), компоненты системы комплимента (адипсин, комплемент С3, фактор В), интерлейкины.
Углеводный обмен. Невысокий, преобладает катаболизм. Углеводный обмен в жировой ткани тесно связан с липидным.
Липидный обмен
Жировая ткань стоит на 2 месте по обмену липидов после печени. Здесь происходят реакции липолиза и липогенеза.
Липогенез. В жировой ткани синтез липидов идет в абсорбтивный период по глицерофосфатному пути. Процесс стимулируется инсулином.
Этапы липогенеза:
1. Под действием инсулина на рибосомах стимулируется синтез ЛПЛ.
2. ЛПЛ выходит из адипоцита и фиксируется на поверхности стенки капилляра с помощью гепарансульфата.
3. ЛПЛ гидролизует ТГ в составе липопротеинов
4. Образовавшийся глицерин уноситься кровью в печень.
5. Жирные кислоты из крови транспортируются в адипоцит.
6. Кроме поступающих из вне экзогенных жирных кислот, в адипоците синтезируются жирные кислоты из глюкозы. Процесс стимулируется инсулином.
7. Жирные кислоты в адипоците под действием Ацил-КоА синтетазы превращаются в Ацил-КоА.
7. Глюкоза поступает в адипоцит с участием ГЛЮТ-4 (активатор инсулин).
8. В адипоците глюкоза вступает в гликолиз с образованием ФДА (активатор инсулин).
9. В цитоплазме ФДА восстанавливается глицерол-ф ДГ до глицерофосфата:
Так как в жировой ткани нет глицерокиназы, глицерофосфат образуется только из глюкозы (не может из глицерина).
10. В митохондриях глицерофосфат под действием глицеролфосфат ацилтрансферазы превращается в лизофосфатид:
11. В митохондриях лизофосфатид под действием лизофосфатид ацилтрансферазы превращается в фосфатид:
11. Фосфатид под действием фосфотидат фосфогидролазы превращается в 1,2-ДГ:
12. 1,2-ДГ под действием ацилтрансферазы превращается в ТГ:
13. Молекулы ТГ объединяются в крупные жировые капли.
2. Липолиз. Липолиз в жировой ткани активируется при дефиците глюкозы в крови (постабсорбционный период, голодание, физическая нагрузка). Процесс стимулируется глюкагоном, адреналином, в меньшей степени СТГ и глюкокортикоидами.
В результате липолиза концентрация свободных жирных кислот в крови возрастает в 2 раза.
ОСОБЕННОСТИ МЕТАБОЛИЗМА БУРОЙ ЖИРОВОЙ ТКАНИ
Энергетический обмен. Ткань потребляет много кислорода, активно окисляет глюкозу и жирные кислоты. Энергетический обмен высокий. При этом, АТФ образуется только в реакциях субстратного фосфорилирования (2 реакции гликолиза, 1 реакции ЦТК). Причина - разобщение в митохондриях белком термогенином (РБ-1) процессов окисления и фосфорилирования, низкая активность АТФ синтетазы, отсутствие дыхательного контроля со стороны АДФ. В бурой жировой ткани вся образующаяся при окислении энергия рассеивается в виде тепла (термогенез).
Термогенез в бурой жировая ткань активируется при переохлаждении СНС, а также при излишке липидов в крови, под действием лептина. Благодаря этому повышается температура тела и снижается концентрация липидов в крови. Отсутствие бурой жировой ткани у взрослых людей является причиной 10% всех случаев ожирения.
ЛЕКЦИЯ № 14
Строение жирных кислот
Жирными кислотами (ЖК) - называются карбоновые кислоты, которые образуются при гидролизе омыляемых липидов.
В основном к жирным кислотам относятся высшие карбоновые кислоты (содержащие 12 и более атомов С). Такие ЖК водонерастворимыми, они транспортируются в крови с помощью альбуминов, а в клетках - с помощью Z-белков.
ЖК человека и животных имеют некоторые особенности строения: 1) они монокарбоновые; 2) содержат четное количество атомов С, самая распространенная длина от 16 до 18 атомов С; 3) углеродный скелет неразветвлен; 4) бывают насыщенными и ненасыщенными (мононенасыщенными и полиненасыщенными); 5). двойные связи несопряжены (разделены метиленовыми мостиками) и имеют цис-конформацию.
№ | Жирная кислота | Индекс ЖК | ∆ ЖК | ω ЖК |
Лауриновая | 12:0 | |||
Миристиновая | 14:0 | |||
Пальмитиновая | 16:0 | |||
Пальмитолеиновая | 16:1 | ∆9 | ω9 | |
Стеариновая | 18:0 | |||
Олеиновая | 18:1 | ∆9 | ω9 | |
Линолевая | 18:2 | ∆9,12 | ω6 | |
Линоленовая | 18:3 | ∆9,12,15 | ω3 | |
Октадекатетраеновая | 18:4 | ∆5,8,11,14 | ω3 | |
Арахиновая | 20:0 | |||
Гадолеиновая | 20:1 | ∆9 | ω9 | |
Эйкозатриеновая | 20:3 | ∆8,11,14 | ω6 | |
Арахидоновая | 20:4 | ∆5,8,11,14 | ω6 | |
Эйкозапентаеновая | 20:5 | ∆5,8,11,14,17 | ω3 | |
Бегеновая | 22:0 | |||
Эруковая | 22:1 | ∆13 | ω9 | |
Андреновая | 22:4 | ∆9,12,15,18 | ω6 | |
Докозапентаеновая | 22:5 | ∆4,7,10,13,16 | ω6 | |
Докозагексаеновая | 22:6 | ∆4,7,10,13,16,19 | ω3 | |
Лигноцериновая | 24:0 | |||
Невроновая | 24:1 | ∆15 | ω9 | |
Цереброновая | 24:0 | α-гидрокси ЖК |
∆ ЖК – номера атомов С, у которых расположены двойные связи.
ω ЖК - число атомов С от последней двойной связи до конца цепи.
Биологическое значение ЖК
- полиеновые ЖК (арахидоновая, эйкозапентаеновая, эйкозатриеновая) используются для синтеза БАВ – эйкозаноидов (простагландинов, простациклинов, тромбоксанов, лейкотриенов, липоксинов).
- ЖК окисляются в аэробных условиях с образованием АТФ;
- ЖК являются структурным компонентом омыляемых липидов: восков, глицеролипидов, сфинголипидов, эфиров холестерина;
КАТАБОЛИЗМ ЖИРНЫХ КИСЛОТ
В живых организмах катаболизм ЖК протекает как в ферментативных так и в неферментативных реакциях.
· Ферментативный катаболизм ЖК происходит в основном в реакциях β-окисления. К побочным путям относиться ферментативное α- и ω-окисление ЖК, а также деградация ЖК в пероксисомах. Хотя эти побочные пути количественно менее важны, их нарушение может приводить к тяжелым заболеваниям.
· Неферментативный катаболизм ЖК протекает в реакциях перекисного окисления липидов (ПОЛ).
β-окисление ЖК
β-окисление — специфический путь катаболизма ЖК с неразветвленной средней и короткой углеводородной цепью. β-окисление протекает в матриксе митохондрий, при котором от С конца ЖК последовательно отделяется по 2 атома С в виде Ацетил-КоА. β-окисление ЖК происходит только в аэробных условиях и является источником большого количества энергии.
β-окисление ЖК активно протекает в красных скелетных мышцах, сердечной мышце, почках и печени. ЖК не служат источником энергии для нервных тканей, так как ЖК не проходят через гематоэнцефалический барьер, как и другие гидрофобные вещества.
β-окисление ЖК увеличивается в постабсорбтивный период, при голодании и физической работе. При этом концентрация ЖК в крови увеличивается в результате мобилизации ЖК из жировых ткани.
Активация ЖК
Активация ЖК происходит в результате образования макроэргической связи между ЖК и HSКоА с образованием Ацил-КоА. Реакцию катализирует фермент Ацил-КоА синтетаза:
RCOOH + HSKoA + АТФ → RCO~SКоА + АМФ+ PPн
Пирофосфат гидролизуется ферментом пирофосфатазой: Н4Р2О7 + Н2О → 2Н3РО4
Ацил-КоА синтетазы находятся как в цитозоле (на внешней мембране митохондрий), так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к ЖК с различной длиной углеводородной цепи.
Транспорт ЖК
Транспорт ЖК в матрикс митохондрий зависит от длины углеродной цепи.
ЖК с короткой и средней длиной цепи (от 4 до 12 атомов С) могут проникать в матрикс митохондрий путём диффузии. Активация этих ЖК происходит ацил-КоА синтетазами в матриксе митохондрий.
ЖК с длинной цепью, сначала активируются в цитозоле (ацил-КоА синтетазами на внешней мембране митохондрий), а затем переносятся в матрикс митохондрий специальной транспортной системой с помощью карнитина. Карнитин поступает с пищей или синтезируется из лизина и метионина с участием витамина С.
· В наружной мембране митохондрий фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I) катализирует перенос ацила с КоА на карнитин с образованием ацилкарнитина;
· Ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитинтранслоказы на внутреннюю поверхность внутренней мембраны митохондрий;
· Фермент карнитинацилтрансфераза II катализирует перенос ацила с карнитина на внутримитохондриальный HSКоА с образованием Ацил-КоА;
· Свободный карнитин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой.
Реакции β-окисление ЖК
1. β-окисление начинается с дегидрирования ацил-КоА ФАД-зависимой Ацил-КоА дегидрогеназой с образованием двойной связи (транс) между α- и β-атомами С в Еноил-КоА. Восстановленный ФАДН2 окисляясь в ЦПЭ, обеспечивает синтез 2 молекул АТФ;
2. Еноил-КоА гидратаза присоединяет воду к двойной связи Еноил-КоА с образованием β-оксиацил-КоА;
3. β-оксиацил-КоА окисляется НАД зависимой дегидрогеназой до β-кетоацил-КоА. Восстановленный НАДН2, окисляясь в ЦПЭ, обеспечивает синтез 3 молекул АТФ;
4. Тиолаза с участием HКоА отщепляет от β-кетоацил-КоА Ацетил-КоА. В результате 4 реакций образуется Ацил-КоА, который короче предыдущего Ацил-КоА на 2 углерода. Образованный Ацетил-КоА окисляясь в ЦТК, обеспечивает синтез в ЦПЭ 12 молекул АТФ.
Затем Ацил-КоА снова вступает в реакции β-окисления. Циклы продолжаются до тех пор, пока Ацил-КоА не превратится в Ацетил-КоА с 2 атома С (если ЖК имела четное количество атомов С) или Бутирил-КоА с 3 атомами С (если ЖК имела нечетное количество атомов С).
Окисление ЖК в пероксисомах
В пероксисомах β-окисления ЖК протекает в модифицированной форме. Этот путь обеспечивает катаболизм в печени длинноцепочечных ЖК (С=20, 22). Продуктами окисления является актоноил-КоА, Ацетил-КоА и Н2О2. Н2О2 синтезируется аэробной дегидрогеназой при взаимодействии ФАДН2 и О2. Актоноил и Ацетил переходят с КоА на карнитин и направляются в митохондрии, где окисляются с образованием АТФ.
α-окисление ЖК
α-окисление — специфический путь катаболизма ЖК с длинной (более 20 атомов С) и разветвленной углеводородной цепью. α-окисления протекает в нервной ткани, где преобладают ЖК с длинной цепью и в печени, куда поступают разветвленные ЖК растительной пищи (например, фитановая кислота).
При α-окислении синтез АТФ не происходит, от ЖК отщепляется по одному атому С, в виде СО2.
Фитановая кислота, ЖК с разветвлённой углеводородной цепью, образуется из фитола, который входит в состав хлорофилла. В этой кислоте у каждого третьего атома С находится метильная группа, что делает невозможным β-окисление данной кислоты. При α-окислении фитановой кислоты вначале удаляется метильная группа, а затем происходит цикл β-окисления.
ω-Окисление ЖК
ω-Окисление прот