Предел функций в точке. Арифметические операций над пределами.
Преде́л фу́нкции (предельное значение функции) —значение, к которому функция в определённом смысле приближается при приближении аргумента к определённой точке.
Определение предела по Коши. Число A называется пределом функции f (x) в точке a, если эта функция определена в некоторой окрестности точки a за исключением, быть может, самой точки a, и для каждого ε > 0 существует δ > 0 такое, что для всех x, удовлетворяющих условию |x – a| < δ, x ≠ a, выполняется неравенство |f (x) – A| < ε.
Определение предела по Гейне. Число A называется пределом функции f (x) в точке a, если эта функция определена в некоторой окрестности точки a за исключением, быть может, самой точки a, и для любой последовательности такой, что сходящейся к числу a, соответствующая последовательность значений функции сходится к числу A.
Если функция f (x) имеет предел в точке a, то этот предел единственный.
Число называется пределом функции f (x) слева в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех выполняется неравенство
Число называется пределом функции f (x) справа в точке a, если для каждого ε > 0 существует δ > 0 такое, что для всех выполняется неравенство
Предел слева обозначается предел справа – Эти пределы характеризуют поведение функции слева и справа от точки a. Их часто называют односторонними пределами. В обозначении односторонних пределов при x → 0 обычно опускают первый нуль: и .
Арифметические операции над пределами
Везде в этом пункте рассматриваются конечные пределы.
1) , , если .
2) , если существуют конечные пределы , .
3) , если существуют конечные пределы , .
Следствие: , если существует конечный предел .
4)
5) g(x)0, ,
Замечание: Аналогичные свойства имеют место для односторонних пределов
17. Два замечательных предела и их следствия. Замеча́тельные преде́лы — термин, использующийся в советских и российских учебниках по математическому анализу для обозначения некоторых широко известных математических тождеств со взятием предела. Особенно известны:
· Первый замечательный предел:
· Второй замечательный предел:
Первый замечательный предел
Доказательство
Рассмотрим односторонние пределы и и докажем, что они равны 1.
Пусть . Отложим этот угол на единичной окружности (R = 1).
Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке (1;0). Точка H — проекция точки K на ось OX.
Очевидно, что:
(где SsectOKA — площадь сектора OKA)
(из : | LA | = tgx)
Подставляя в (1), получим:
Так как при :
Умножаем на sinx: Перейдём к пределу:
Найдём левый односторонний предел:
Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.
Следствия
·
·
·
· Доказательство следствий
Второй замечательный предел
Доказательство второго замечательного предела:
Доказательство для натуральных значений x Докажем вначале теорему для случая последовательности По формуле бинома Ньютона:
Полагая , получим:
(1)
Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывает, поэтому величины возрастают. Поэтому последовательность — возрастающая, при этом
(2).
Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство
Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:
.
Сумму в скобке найдём по формуле суммы членов геометрической прогрессии:
.
Поэтому (3).
Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): .
Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.
Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, то есть докажем, что . Рассмотрим два случая:
1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где — это целая часть x.
Отсюда следует: , поэтому .Если , то . Поэтому, согласно пределу , имеем:
.По признаку (о пределе промежуточной функции) существования пределов .
2.Пусть . Сделаем подстановку − x = t, тогда
3. .Из двух этих случаев вытекает, что для вещественного x.
Следствия
1.
2.
3.
4.
5. для ,
6.