Дифф-ие ф-ии комплексного переменного. Аналитические функции.
Производная функции комплексного переменного определяется, как и производная в действительной области:
Здесь
z0, z _ комплексные и f(z0) = f(z0+z) - f(z).
Используя это определение и свойства пределов, несложно убедиться в справедливости следующих правил дифференцирования.
1. Сумма и произведение дифференцируемых в точке функций, есть функция и справедливы равенства:
2. Частное дифференцируемых в точке функций, при условии, что знаменатель в точке не равен нулю, есть дифференцируемая в этой точке функция, :
3. Сложная функция f( (z)) дифференцируема в точке z0, если в этой точке дифференцируема функция (z), а функция f(u) дифференцируема в точке u0,
где u0 = (z0) и u = (z). При этом в точке z0 имеет место формула:
Для элементарных функций комплексного переменного справедливы формулы дифференцирования, установленные для действительных значений аргумента.
Например, рассмотрим функцию f(z) = z3.
По определению производной для любой точки z, принадлежащей комплексной области, записываем:
Предел существует для любой точки z, принадлежащей комплексной области и
(z3)' =3z2.
Аналогично можно получить:
(zn)' = nzn-1 (n - действительное число).
ПРИМЕР 1. Вычисление значения производной функции коплексного переменного в точке.
Если f(z) = f(x+iy) = u(x, y) + iv(x, y), т.е. u(x, y) = Re f(z) и v(x, y) = Im f(z),
то справедливы следующие утверждения:
1. Если функция f(z) дифференцируема в точке, то в этой точке существуют частные производные ее действительной и мнимой частей
u(x, y) = Re f(z), v(x, y) = Im f(z)
и выполняется условие Коши-Римана:
2. Если u(x, y) и v(x, y) дифференцируемы в точке (x0, y0) (имеют непрерывные частные производные в этой точке) и выполняется условие Коши-Римана, то функция f(z) = f(x+iy) = u(x, y) + iv(x, y) дифференцируема в точке z0 = x0+ iy0.
3. Производная дифференцируемой функции может быть записана по одной из формул:
Условие Коши-Римана
Теорема (необходимые условия дифференцирования). Пусть функция дифференцируема в точке . Тогда функции имеют частные производные в точке удовлетворяют следующим условиям:
.
Условия (*) называются условиями Коши-Римана.
Доказательство.
Пусть . Какую бы не выбрали траекторию отношение будет стремится к одному и тому же числу.
Выберем 2 траектории.
(действительная ось)
(мнимая ось)
.
.
Сравнивая вещественные и мнимые части первого и второго уравнения получаем условие Коши-Римана.
Пример.
Конформные отображения
Взаимно однозначное отображение области D на область D* (евклидова пространства или риманова многообразия) называется конформным (лат. conformis — подобный), если в окрестности любой точки D дифференциал этого преобразования есть композиция ортогонального преобразования и гомотетии.
Этот термин пришёл из комплексного анализа, изначально использовался только для конформных отображений областей плоскости.
Связанные определения
Если при конформном отображении сохраняется ориентация, то говорят о конформном отображении первого рода; если же она меняется на противоположную, то говорят о конформном отображении второго рода либо антиконформном отображении .
Две метрики на гладком многообразии M называются конформноэквивалентными если существует гладкая функция такая что . В этом случае тождественное отображение на M индуцирует конформное отображение .
Свойства
Конформное отображение сохраняет форму бесконечно малых фигур;
Конформное отображение сохраняет углы между кривыми в точках их пересечения (свойство сохранения углов).
Это свойство можно также взять за определение конформного отображения.
Теорема Лиувилля: Всякое конформное отображение области евклидова пространства при можно представить в виде конечного числа суперпозиций — изометрий и инверсий.
Кривизна Вейля сохраняется при конформном отображении, то есть если и g — конформноэквивалентные метрические тензоры, то
где и W обозначают тензоры Вейля для и g соответственно.
Для конформно-эквивалентых метрик
Связности связаны следующей формулой:
Кривизны связаны следующей формулой:
если g(X,X) = g(Y,Y) = 1,g(X,Y) = 0,Xψ = 0 а Hessψ обозначает Гессиан функции ψ.
Формулу для секционных кривизн можно записать в следующем виде:
где f = e − ψ.
При вычислении скалярной кривизны n-мерного риманова многообразия, удобнее записывать конформный фактор в виде . В этом случае: