Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой.

Точка разрыва является точкой разрыва 2-ого рода, если хотя бы один из односторонних пределов не существует или равен бесконечности.

Точка разрыва называется устранимой, если оба односторонних предела существуют, являются конечными числами, равными между собой, но не равны значению функции в этой точке.

27. Теоремы о непрерывных функциях

1)Первая теорема Вейерштрасса

Если ф-ция f(x) непрерывна на отрезке [а, b], то она ограничена на этом отрезке.

Теорема неверна, если в ней отрезок заменить интервалом (а,b) или полуинтервалом[a,b) либо (a,b]

2) Вторая теорема Вейерштрасса

Если ф-ция f(x)прерывна на отрезке [a, b], то она достигает на этом отрезке своего наименьшего значения m и наиб. Значения М, т.е. сущ-ют точки , Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru [a, b], такие, что f( Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru )=m, f( Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru

Теорема утверж-т, что знач-я непрерыв.на отрезке [а, b] ф-ции заключены между ее наибольшими и наимен. знач-ями, т.е. m ≤ f(x) ≤M Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru x Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru

Теорема Больцано-Коши о промежут.значении

Если ф-ция f(x) непрерывна на отрезке [a, b]и f(a)=A, f(b)=B (A≠B), то каково бы ни было число С, заключенное между А и В, найдется точка z Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru [a, b], такая, что f(z)=C.

Cледствие. Если ф-ция f(x) непрерывна на отрезке [a, b] и на его концах принимает знач-я разных знаков, то на этом отрезке сущ-ет хотя бы одна точка Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , в кот. ф-ция обращается в нуль, т.е.f( Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru )=0

Алгебраич.сумма любого конечного числа непрерыв. на некот. отрезке ф-ций непрерывна на этом отрезке.

28.Произв. ф-ции. Геометр., механ., экон. смысл произ-ной. Эласт-сть ф-ции, ее экон приложение.

Пусть ф-ция y=f(x) определена на некот множ-тве Х, тогда произв.ф-цией y=f(x) назыв. предел отношения приращения ф-ции к приращению независ. переменной, если этот предел сущ-ет когда приращ-е аргумента стремится к нулю. Если ввести обозначения: Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru то выраж-е можно записать в виде:

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru Обозначается произ-я у’, f’(x), Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru ,

C геометр. точки зр. значения производной ф-ции, вычисленное в некот. точке Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru численно равно угловому коофициенту касательной, проведенной к графику ф-ции у=f(x) в точке с абсциссой Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru ,

Т.е. f’(

F’(

Пусть задана ф-ция S=S(t), кот. опред-ет зависимость пути от времени,в механике S’(t)=V –мгнов.скорость в момент времени t.

Пусть задана ф-ция у=f(x), для которой сущ-ет производная у’=f’(x). Эластич-тью ф-ции у=f(x) относ-но переменной х назыв-ся предел: Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru

Его обознач-т

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru

Эластич-ть относ-но х есть приближен.процентн прирост ф-ции (повышение/пониж-е) при приращении независ переменной на 1%.

29.Производная показательной неявной функции.Производные высших порядков:

Производная показательной функции:

При Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru для любого х

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru

Производная неявной функции:

При вычислении производной неявной функции воспользуемся правилом дифференцирования сложной функции. Продифференцируем уравнение Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru . Отсюда получим формулу для производной функции Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , заданной неявно: Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru = Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru . Таким же способом нетрудно получить формулы для частных производных функции нескольких переменных, заданной неявно, например, уравнением Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru :

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru .

Производные высших порядков:

Если f '(x) — производная функции f (x), то производная от нее по независимой переменной x, (f '(x))' = f ''(x), называется производной второго порядка. Аналогично определены производные 3-го, 4-го, , и т.д, n-го порядка: f''' (x) = ( f'' (x))' , f (4)(x) = (f''' (x))' , f (n)(x) = (f (n -1)(x))'

30. Теорема Лагранжа. Правило Лопиталя.

Теорема Лагранжа: Пусть задана ф-я Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru и пусть она: 1) опр-на и непрер на Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru ; 2) имеет кон произв-ю Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru на Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru . Тогда найдётся такая т. с (a<c<b), что вып-ся рав-во

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru Док-во: Введём вспомогат функцию

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru

Она удовл-т всем условиям теоремы Ролля. Действительно, F(x) опред-на и непрер на Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru ,

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru ,т.е. сущ на Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru . След-но, найдётся точка с (a<c<b), такая, что F’(c) = 0, т.е.

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru или Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru

Тогда Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru

Правило Лопиталя: Пусть ф-и f(x) и g(x) одновр явл либо бескон б-ми, либо беск-но малыми в т. Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru . Тогда при выч-и пределов Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru при x → Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru для раскрытия неопред-тей вида Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru или Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru удобно применить пр. Лопиталя :

Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru Неопределенности вида 0 · ∞, ∞ – ∞, Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru часто удается свести к неопределенностям вида Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru или Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru с помощью различных преобразований.

31. Достаточное усл-е возраст-я (убыв-я) ф-й.

Ф-я Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru наз-сявозраст-ейна инт-ле Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , если для любых Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru и Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru из этого инт-ла, для которых Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , верно нерав-во Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru.Ф-я Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru наз-сяубыв-ей на инт-ле Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , если для любых x1 и x2 из этого инт-ла, для кот Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , верно нерав-во Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru .Необх-ое усл-е возраст-я ф-ии:если ф-ия Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru диффер-ма и возраста на инт-ле Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , то Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru для всех х из этого инт-ла.Необх-ое усл-е убыв-я ф-ции.Если ф-ция Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru дифф-ма и убыва на инт-ле Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , то Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru для всех х из этого инт-ла.Достаточное усл-е возраст-я (убыв-я ф-и).Пусть ф-я Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru диф-ма на инт-ле Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru . Если во всех точках этого инт-ла Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , то ф-ия возраста на этом интле, а если Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru , то ф-я убывает на этом инт-ле.




32. Экстремумы ф-й.

Точка x = x0 называется точкой максимума, а число Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru — максимумом функции, если для всех точек из некоторой окрестности точки x0 , не совпадающих с x0 , выполняется неравенство Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru .

Точка x = x0 называется точкой минимума, а число Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru — минимумом функции, если для всех точек из некоторой окрестности точки x0 , не совпадающих с точкой x0 , выполняется неравенство Точка разрыва является точкой разрыва 1-ого рода, если оба односторонние пределы в этой точке существуют, являются конечными числами, не равными между собой. - student2.ru .

Наши рекомендации