Гипербола. Вывод канонического уравнения.

Гипербола.

Гиперболойназывается множество точек плоскости, для которых модуль разности расстояний до двух фиксированных точек F1 и F2 этой плоскости, называемых фокусами, есть величина постоянная.

|r1 - r2| = 2a, откуда Гипербола. Вывод канонического уравнения. - student2.ru Если обозначить b² = c² - a², отсюда можно получить

Гипербола. Вывод канонического уравнения. - student2.ru - каноническое уравнение гиперболы

Свойства гиперболы:

1) Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

2) Ветви гиперболы имеют две асимптоты, определяемые уравнениями

Гипербола. Вывод канонического уравнения. - student2.ru и Гипербола. Вывод канонического уравнения. - student2.ru .

3) Наряду с гиперболой (11.3) можно рассмотреть так называемую сопряженную гиперболу, определяемую каноническим уравнением

Гипербола. Вывод канонического уравнения. - student2.ru , (11.3`)

для которой меняются местами действительная и мнимая ось с сохранением тех же асимптот.

4) Эксцентриситет гиперболы e > 1.

5) Отношение расстояния ri от точки гиперболы до фокуса Fi к расстоянию di от этой точки до отвечающей фокусу директрисы равно эксцентриситету гиперболы.

Доказательство можно провести так же, как и для эллипса.

Гипербола. Вывод канонического уравнения. - student2.ru

Гипербола. Вывод канонического уравнения. - student2.ru

Парабола. Вывод канонического уравнения.

Парабола.

Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до некоторой фиксированной прямой. Точка F называется фокусом параболы, а прямая – ее директрисой.

у Для вывода уравнения параболы выберем декартову

систему координат так, чтобы ее началом была середина

d M(x,y) перпендикуляра FD, опущенного из фокуса на директри-

r су, а координатные оси располагались параллельно и

перпендикулярно директрисе. Пусть длина отрезка FD

D O F x равна р. Тогда из равенства r = d следует, что

Гипербола. Вывод канонического уравнения. - student2.ru поскольку

Гипербола. Вывод канонического уравнения. - student2.ru Алгебраическими преобразованиями это уравнение можно привести к виду: y² = 2px

называемому каноническим уравнением параболы. Величина р называется параметромпараболы.

Свойства параболы:

1) Парабола имеет ось симметрии (ось параболы). Точка пересечения параболы с осью называется вершиной параболы. Если парабола задана каноническим уравнением, то ее осью является ось Ох, а вершиной – начало координат.

2) Вся парабола расположена в правой полуплоскости плоскости Оху.

Замечание. Используя свойства директрис эллипса и гиперболы и определение параболы, можно доказать следующее утверждение:

Множество точек плоскости, для которых отношение е расстояния до некоторой фиксированной точки к расстоянию до некоторой прямой есть величина постоянная, представляет собой эллипс (при e<1), гиперболу (при e>1) или параболу (при е=1).

Наши рекомендации