Угол между прямыми на плоскости
Определение.Если заданы две прямые y = k1 x + b1 , y = k 2x + b2 , то острый угол между этими прямыми будет определяться как
. Две прямые параллельны, если k1 = k2 . Две прямые перпендикулярны, если k1 = -1/ k2 . Теорема.Прямые Ах + Ву + С = 0 и А 1 х + В1 у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = λА, В1 = λВ. Если еще и С1 = λС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы уравнений этих прямых.
Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой
Определение.Прямая, проходящая через точку М1 (х1 , у1 ) и перпендикулярная к прямой у = kx + b представляется уравнением:
Расстояние от точки до прямой
Теорема.Если задана точка М(х0 , у0 ), то расстояние до прямой Ах + Ву + С =0 определяется как
.
Доказательство.Пусть точка М 1(х 1, у 1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1 :
(1)
Координаты x1 и у1 могут быть найдены как решение системы уравнений:
Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М 0 перпендикулярно заданной прямой.
Если преобразовать первое уравнение системы к виду:
A(x – x 0 ) + B(y – y0 ) + Ax0 + By0 + C = 0,
то, решая, получим:
Подставляя эти выражения в уравнение (1), находим:
Теорема доказана.
Пример. Определить угол между прямыми: y = -3 x + 7; y = 2 x + 1.
k 1 = -3; k 2 = 2; tgφ = ; φ= p /4.
Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны. Находим: k 1 = 3/5, k2 = -5/3, k 1* k 2 = -1, следовательно, прямые перпендикулярны. Пример. Даны вершины треугольника А(0; 1), B (6; 5), C (12; -1). Найти уравнение высоты, проведенной из вершины С. Находим уравнение стороны АВ: ; 4 x = 6 y – 6;
2 x – 3 y + 3 = 0;
Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b .
k = . Тогда y =
. Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению:
откуда b = 17. Итого: .
Ответ: 3 x + 2 y – 34 = 0.
Уравнение прямой на плоскости
Определение.Любая прямая на плоскости может быть задана уравнением первого порядка
Ах + Ву + С = 0,
причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой.
В зависимости от значений постоянных А,В и С возможны следующие частные случаи:
• C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат
• А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох
• В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу
• В = С = 0, А ≠0 – прямая совпадает с осью Оу
• А = С = 0, В ≠0 – прямая совпадает с осью Ох
Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.
Уравнение прямой по точке и вектору нормали
Определение.В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой , заданной уравнением Ах + Ву + С = 0. Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1). Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно С = -1.
Итого: искомое уравнение: 3х – у – 1 = 0.