В группе из 100 туристов 70 человек знают английский язык, 45 знают французский язык и 23 человека знают оба языка. Сколько туристов в группе не знают ни английского, ни французского языка?

Решение задачи:

Обозначим: U – универсальное множество, т.е. множество всех туристов,

А – множество туристов, знающих английский язык,

B – множество туристов, знающих французский язык.

Проиллюстрируем:

 
  В группе из 100 туристов 70 человек знают английский язык, 45 знают французский язык и 23 человека знают оба языка. Сколько туристов в группе не знают ни английского, ни французского языка? - student2.ru

Необходимо найти количество туристов, не знающих ни одного языка, т.е. количество элементов множества D = U \ (AÈB) (на рисунке заштриховано).

Дано (по условию): m(U) = 100 (чел.)

m(A) = 70 (чел.)

m(B) = 45 (чел.)

m(AÇB) = 23 (чел.)

Найти: ` m(D) = m(U) – m(AÈB) - ?

Решение: Используя формулу, находим количество туристов, знающих хотя бы один язык:

m(AÈB) = m(A) + m(B) – m(AÇB) = 70 + 45 - 23 = 92, Þ

количество туристов, не знающих ни одного языка:

m(D) = m(U) - m(AÈB) = 100 – 92 = 8 (чел.)

Ответ: 8 чел.

Аналогично решить задачи № 2, 3, 4.

2.Из 40 предложений 30 содержат предлог «в», 27 предлог «на», в пяти предложениях нет ни того, ни другого. Сколько предложений содержат оба предлога?

3.20 мальчиков поехали на пикник. При этом 5 из них обгорели, 8 были сильно покусаны комарами, а 10 остались всем довольны. Сколько обгоревших мальчиков не было покусано комарами? Сколько покусанных комарами мальчиков также и обгорели? (Сформулируйте эту задачу как: 1) лингвистическую, например: анализ наличия 2 морфем в словах; 2) в общем виде, используя понятия: множество, подмножества и их элементы).

4.В штучном отделе магазина посетители обычно покупают либо один торт, либо одну коробку конфет, либо один торт и одну коробку конфет, В один из дней было продано 57 тортов и 36 коробок конфет. Сколько было покупателей, если 12 человек купили и торт, и коробку конфет?

5. В олимпиаде по иностранному языку принимало участие 40 студентов, им было предложено ответить на один вопрос по лексикологии, один по страноведению и один по стилистике. Результаты проверки ответов представлены в таблице:

Получены правильные ответы на вопросы Колич-во ответивших
по лексикологии
по страноведению
по стилистике
по лексикологии и страноведению
по лексикологии и стилистике
по страноведению и стилистике

Известно также, что трое не дали правильных ответов ни на один вопрос. Сколько студентов правильно ответили на все три вопроса? Сколько студентов правильно ответили ровно на два вопроса?

Решение задачи:

Обозначим:

U – универсальное множество, т.е. множество всех студентов,

A – множество студентов, правильно ответивших на вопросы по лексикологии,

B – множество студентов, правильно ответивших на вопросы по страноведению,

С – множество студентов, правильно ответивших на вопросы по стилистике,

D - множество студентов, не давших ни одного правильного ответа.

Проиллюстрируем:

В группе из 100 туристов 70 человек знают английский язык, 45 знают французский язык и 23 человека знают оба языка. Сколько туристов в группе не знают ни английского, ни французского языка? - student2.ru

Дано (по условию): m(U) = 40 (чел.) m(D) = 3 (чел.)

m(A) = 20 (чел.) m(AÇB) = 7 (чел.)

m(B) = 18 (чел.) m(AÇC) = 8 (чел.)

m(C) = 18 (чел.) m(BÇC) = 9 (чел.)

Найти: 1) m(AÇBÇC) - ? 2) сколько студентов ответили ровно на 2 вопроса?

Решение:

1) Пересечение трех множеств разбивает универсальное множество на классы, т.е. на попарно непересекающиеся непустые подмножества. Обозначим число элементов в каждом классе маленькими латинскими буквами (см. рисунок). Можно проверить (и доказать!), что

m(AÈBÈC) = m(A) + m(B) + m(C) – m(AÇB) – m(AÇC) – m(BÇC) + m(AÇBÇC)

Очевидно, что m(AÈBÈC) = m(U) – m(D) = 40 – 3 = 37

Подставив в формулу известные данные, получим:

37 = 20 + 18 + 18 – 7 – 8 – 9 + m(AÇBÇC) è m(AÇBÇC) = 5

Итак, на три вопроса ответили 5 студентов

2) Чтобы найти количество студентов, правильно ответивших ровно на два вопроса, необходимо найти и сложить d, e, f:

d + e + f = (8 – m(AÇBÇC)) + (7 – m(AÇBÇC)) + (9 – m(AÇBÇC)) = 3 + 2 + 4 = 9

Ответ: 1) 5; 2) 9

Наши рекомендации