Асимптота. Уравнение наклонной асимптоты.
Определение: Прямая называется наклонной асимптотой функции f(x) при , если f определена в окрестности точки и расстояние между графиком и прямой стремится к нулю.
Уравнение наклонной асимптоты:
Пусть - асимптота при
, , ,
, , , значит ,
Замечание: возможен случай, когда k существует, а b – нет, в этом случае асимптот нет!
Билет 27
Первообрáзная. Неопределенный интеграл. Свойства.
Определение 1: Функция F называется первообразной функции f на интервале (a,b), если функция f непрерывна на интервале (a,b), и для всех x из этого интервала выполняется равенство: F΄(x)=f(x).
Замечание: Вместо (a,b) можно рассматривать [a,b], (a,b] и [a,b), но нужно будет говорить про односторонние производные: =f(a), и =f(b).
Пример
.
на промежутке (-∞,0) и на (0,+∞).
Теорема:(О множестве всех первообразных).
Пусть F(x) является первообразной функции f(x) на на промежутке I, тогда функции вида F(x)+C и только они являются первообразными функции f(x), где C – произвольная константа.
Доказательство:
Пусть функция F(x) – первообразная функции f(x), тогда F΄(x)=f(x) и (F(x)+C)΄=f(x). Пусть функции F и G – первообразные функции f(x) на промежутке I (нужно доказать, что они отличаются на константу). Тогда (F-G)΄=0 F-G=C (по теореме о функции, имеющей нулевую производную).
Теорема доказана.
Определение 2: Множество всех первообразных функции f(x) на промежутке I называется неопределенным интегралом и обозначается . При этом если функция F(x) – первообразная функции f(x), то .
Пример:
.
Свойства первообразных и неопределенного интеграла.
1. Пусть функция f(x) имеет первообразную F(x) на промежутке I и функция g(x) имеет первообразную G(x) на промежутке I, тогда функция f(x)±g(x) будет иметь первообразную F(x)±G(x) на промежутке I. Для интегралов: .
Замечание: Обратное неверно! Из существования интеграла не следует существование интегралов и .
Первообразной функции k·f(x) является функция k·F(x). Для интегралов: .
2. Первообразной производной функции f΄(x) является сама функция f(x). Для интегралов: .
3. (по определению).
Билет 28
Замена переменной в неопределенном интеграле.
Основную роль в интегральном исчислении играет формула замены переменных (или подстановки) (1).
В этой формуле предполагается, что есть непрерывно дифференцируемая функция на некотором интервале изменения , а - непрерывная функция на соответствующем интервале или отрезке оси . Докажем это утверждение. Слева в (1) стоит функция, которая является первообразной от . Ее производная по равна:
Следовательно, если ввести в этой функции подстановку , то получится первообразная от функции . Интеграл же справа есть, по определению, некоторая первообразная от . Но две первообразные для одной и той же функции отличаются на некоторую постоянную . Это и записано в виде первого равенства (1). Что касается второго, то оно носит формальный характер - мы просто уславливаемся писать:
Пример: .
Билет 29