Скалярное, векторное произведение векторов и угол между векторами.
Скалярное произведение двух векторов вычисляется командой dotprod(a,b).
Векторное произведение двух векторов вычисляется командой crossprod(a,b).
Угол между двумя векторами a и b вычисляется с помощью команды angle(a,b).
Норма вектора.
Норму (длину) вектора , которая равна , можно вычислить с помощью команды norm(а,2).
Можно нормировать вектор а с помощью команды normalize(a), в результате выполнения которой будет получен вектор единичной длины .
Нахождение базиса системы векторов. Ортогонализация системы векторов по процедуре Грамма-Шмидта.
Если имеется система n векторов , то с помощью команды basis([a1,a2,…,an]) можно найти базис этой системы.
При помощи команды GramSchmidt([a1,a2,…,an]) можно ортогонализовать систему линейно-независимых векторов .
Задание 1.
1. Даны два вектора: и . Найти и угол между a и b. Для решения этой задачи наберите:
> with(linalg):
> a:=([2,1,3,2]); b:=([1,2,-2,1]);
a:=[2,1,3,2]
b:=[1,2,-2,1]
> dotprod(a,b);
> phi=angle(a,b);
2. Найти векторное произведение , а затем скалярное произведение , где , .
> restart; with(linalg):
> a:=([2,-2,1]); b:=([2,3,6]);
a:=[2,-2,1]
b:=[2,3,6]
> c:=crossprod(a,b);
c:=[-15,-10,10]
> dotprod(a,c);
3. Найти норму вектора .
> restart; with(linalg):
> a:=vector([1,2,3,4,5,6]): norm(a,2);
4. Из системы векторов: , , , , выделить базис и ортогонализовать его по процедуре Грамма-Шмидта:
> restart; with(linalg):
> a1:=vector([1,2,2,-1]):
a2:=vector([1,1,-5,3]):
a3:=vector([3,2,8,7]): a4:=vector([0,1,7,-4]):
a5:=vector([2,1,12,-10]):
> g:=basis([a1,a2,a3,a4,a5]);
g:= [a1, a2, a3, a5]
> GramSchmidt(g);
[[1,2,2,-1], [2,3,-3,2], ,
Действия с матрицами
Определение матрицы.
Для определения матрицы в Maple можно использовать команду matrix(n, m, [[a11,a12,…,a1n], [a21,a22,…,a2m],…, [an1,an2,…,anm]]), где n - число строк, m – число столбцов в матрице. Эти числа задавать необязательно, а достаточно перечислить элементы матрицы построчно в квадратных скобках через запятую. Например:
> A:=matrix([[1,2,3],[-3,-2,-1]]);
В Maple матрицы специального вида можно генерировать с помощью дополнительных команд. В частности диагональную матрицу можно получить командой diag. Например:
> J:=diag(1,2,3);
Генерировать матрицу можно с помощью функции f(i, j) от переменных i, j – индексов матрицы: matrix(n, m, f), где где n - число строк, m – число столбцов. Например:
> f:=(i, j)->x^i*y^j;
>A:=matrix(2,3,f);
Число строк в матрице А можно определить с помощью команды rowdim(A), а число столбцов – с помощью команды coldim(A).
Арифметические операции с матрицами.
Сложение двух матриц одинаковой размерности осуществляется теми же командами, что и сложение векторов: evalm(A+B) или matadd(A,B). Произведение двух матриц может быть найдено с помощью двух команд:
1) evalm(A&*B);
2) multiply(A,B).
В качестве второго аргумента в командах, вычисляющих произведение, можно указывать вектор, например:
> A:=matrix([[1,0],[0,-1]]);
> B:=matrix([[-5,1], [7,4]]);
> v:=vector([2,4]);
> multiply(A,v);
> multiply(A,B);
> matadd(A,B);
Команда evalm позволяет также прибавлять к матрице число и умножать матрицу на число. Например:
> С:=matrix([[1,1],[2,3]]):
> evalm(2+3*С);