Принцип независимости действия сил.

Если на тело действует несколько сил, то каждая из них сообщает телу ускорение, определяемое основным законом динамики, так, как если бы других сил не было.

принцип независимости действия сил. - student2.ru Например, произвольно направленную и в пространстве силу F можно представить в виде суммы ее составляющих (компонентов):

где ex, ey, ez - орты прямоугольной системы координат OXYz.

Второй закон динамики в этом случае имеет вид:

 
  принцип независимости действия сил. - student2.ru

 
  принцип независимости действия сил. - student2.ru

откуда:

МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ПРОИЗВОЛЬНОГО ЦЕНТРА.

Моментом силы называют количественную меру вращательного эффекта, вызываемого силой. Момент силы должен определять величину этого эффекта, плоскость поворота точки и направление поворота в этой плоскости.

принцип независимости действия сил. - student2.ru (рис23)

Величина момента силы равна произведению модуля силы на ее плечо h (величину перпендикуляра, опущенного из заданного центра O на линию дей­ствия силы). Если начало вектора си­лы совпадает с точкой А, а конец – А с точкой В, то, очевидно, плоскость поворота совпадает с плоскостью треугольника OAB (рис. 23).

принцип независимости действия сил. - student2.ru Условились вектор момента силы относительно центра M0(F) проводить из этого центра O перпендикулярно плоскости поворота в ту сторону, откуда поворот виден происходящим против хода часо­вых стрелок. Модуль же вектора (длина вектора в выбранном масштабе) равен .

 
  принцип независимости действия сил. - student2.ru

Очевидно, что такой вектор равен векторному произведению:

где: r - радиус-вектор точки приложения силы, проведенный из заданного центра.

МОМЕНТ СИЛЫ ОТНОСИТЕЛЬНО ПРОИЗВОЛЬНОЙ ОСИ.

Моментом силы относительно оси называют величину, характеризующую вращательный эффект, вызываемый силой при вращении тела вокруг заданной оси.

К телу А, способному вращаться вокруг оси z приложена сила F (рис. 24). Очевидно, что эффект вызываемый силой, определяется сум­мой эффектов, вызываемых ее проекциями Fz и Fxy, первая из кото­рых вращения тела вокруг оси z вызвать не может. Следовательно, момент силы относительно заданной оси определяется моментом ее про­екции на плоскость, перпендикуляр­ную оси, относительно точки Пересечения оси с плоскостью.

МОМЕНТ СИЛЫ оТНОСИТЕЛЬНО КООРДИНАТНОЙ ОСИ.

Пользуясь полученным выше результатом можно записать выражения моментов силы относительно координатных осей. Пусть к телу приложена сила F, координаты точки приложения которой равны x,y,z. Момент силы F относительно оси oz равен моменту ее проекции Fxy относительно начала координат (т. 0). В свою очередь момент Fxy равен сумме моментов сил Fx и Fy относительно того же центра. Очевидно, что плечи сил Fx и Fy численно рав­ны координатам точки приложения силы y и x соответственно. С учетом знаков моментов этих составляющих можно записать

принцип независимости действия сил. - student2.ru (рис 25)

 
  принцип независимости действия сил. - student2.ru

принцип независимости действия сил. - student2.ru

 
  принцип независимости действия сил. - student2.ru

принцип независимости действия сил. - student2.ru Аналогично определяются моменты силы F относительно осей ОХ и ОУ:

Наши рекомендации