Дифференциальное уравнение теплопроводности
Решение задач теплопроводности связано с определением поля температур и тепловых потоков. Для установления зависимости между величинами, характеризующими явление теплопроводности, воспользуемся методом математической физики, который рассматривает протекание физических процессов в произвольно выделенном из всего рассматриваемого пространства элементарном объеме и в течение бесконечно малого промежутка времени. Это позволяет пренебречь изменением некоторых величин и существенно упростить выкладки.
При выводе дифференциального уравнения теплопроводности считаем, что тело однородно и изотропно (то есть физические свойства тела не зависят от выбранного в нём направления), физические параметры l, с (теплоемкость), и r (плотность) постоянны, внутренние источники теплоты равномерно распределены в теле. Под внутренними источниками теплоты понимаются тепловыделения, например, в тепловыделяющих элементах атомных реакторов, или при прохождении тока в электрических проводниках. Внутренние источники теплоты характеризуются величиной qv — количеством теплоты, которое выделяется в единице объема в единицу времени.
В основу вывода положен закон сохранения энергии, согласно которому вся теплота, выделенная внутренними источниками dQвн и внесенная извне в элементарный объем путем теплопроводности dQm за время dt, идет на изменение внутренней энергии вещества, содержащегося в этом объеме:
(10.7)
Выделим в теле элементарный параллелепипед с ребрами dx, dy, dz (рис. 10.2).
Рисунок 10.2– К выводу дифференциального уравнения теплопроводности
Количество теплоты, которое проходит путем теплопроводности внутрь выделенного объема в направлении оси Ох через элементарную площадку dy×dz за время dt:
(10. 8)
На противоположной грани параллелепипеда температура получит приращение и будет составлять Количество тепла, отведенного через эту грань:
Разница количества теплоты, подведенного к элементарному параллелепипеду и отведенного от него, представляет собой теплоту, внесенную путем теплопроводности в направлении оси Ох:
.
Аналогично:
;
Полное количество теплоты внесено в элементарный параллелепипед путем теплопроводности:
.
Здесь произведение dx×dy×dz представляет собой объем элементарного параллелепипеда dv. Количество теплоты, которое выделилось в элементарном объеме за счет внутренних источников:
.
Приращение внутренней энергии можно выразить через массу параллелепипеда r×dv, теплоемкость с и приращение температуры :
.
Подставляя выражения для dQm, dQвн и dU в уравнение (107.), после соответствующих сокращений получаем:
(10.9)
Сумма вторых частных производных любой функции в математическом анализе носит название оператора Лапласа и обозначается следующим образом:
.
Величину называют коэффициентом температуропроводности и обозначают буквой . В указанных обозначениях уравнение (10.9) примет вид:
. (10.10)
Это уравнение называется дифференциальным уравнением теплопроводности или уравнением Фурье и лежит в основе математической теории теплопроводности. Коэффициент температуропроводности является физическим параметром вещества. Из уравнения (10.10) следует, что изменение температуры во времени для любой точки тела пропорционально величине .