История возникновения процентов
Слово «процент» имеет латинское происхождение: «pro centum» - это «на сто». Часто вместо слова «процент» используют это словосочетание. То есть процентом называется сотая часть числа.
Проценты были известны индийцам ещё в Vв. и это очевидно, так как именно в Индии с давних пор счет велся в десятичной системе счисления.
Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню.
«Римляне брали с должника лихву (т. е. деньги сверх того, что дали в долг).
От римлян проценты перешли к другим народам Европы.
В Европе десятичные дроби появились на 1000 лет позже, их ввел бельгийский ученый Симон Стевин. В 1584г. Он впервые опубликовал таблицу процентов.
Введение процентов было удобным для определения содержания одного вещества в другом; в процентах стали измерять количественное изменение производства товара, рост и спад цен, рост денежного дохода и т.д.
История развития «процента»
Процентами очень удобно пользоваться на практике, так как они выражают части целых чисел в одних и тех же сотых долях. Это дает возможность упрощать расчеты и легко сравнивать части между собой и с целыми. Идея выражения частей целого постоянно в одних и тех же долях, вызванная практическими соображениями, родилась еще в древности у вавилонян, которые пользовались шестидесятеричными дробями. Уже в клинописных таблицах вавилонян содержатся задачи на расчет процентов. До нас дошли составленные вавилонянами таблицы процентов, которые позволяли быстро определить сумму процентных денег. Были известны проценты и в Индии. Индийские математики вычисляли проценты, применив так называемое тройное правило, т. е. пользуясь пропорцией. Они умели производить и более сложные вычисления с применением процентов. Денежные расчеты с процентами были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. Даже римский сенат вынужден был установить максимально допустимый процент, взимаемый с должника, так как некоторые заимодавцы усердствовали в получении процентных денег. От римлян проценты перешли к другим народам.
В средние века в Европе в связи с широким развитием торговли особо много внимания обращали на умение вычислять проценты. В то время приходилось рассчитывать не только проценты, но и проценты с процентов, т. е. сложные проценты, как называют их в наше время. Отдельные конторы и предприятия для облегчения труда при вычислениях процентов разрабатывали свои особые таблицы, которые составляли коммерческий секрет фирмы. Симон Стевин такжеизвестен замечательным разнообразием научных открытий в том числе – особой записи десятичных дробей.
Долгое время под процентами понимались исключительно прибыль и убыток на каждые 100 рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике. Нынче процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу).
1.3 Что спрятано под символом %?
Знак % закрепился для обозначения процентов в XVII веке, которое в процентных расчетах часто писалось сокращенно cto. Это понятие появилось в математике в связи с развитием торговли, когда за взятые в долг деньги заимодавец получал с должника какую-либо сумму сверх долга. Обычно эта сумма выражалась в сотых долях. Несколько позже у неё появилось название - проценты.
Отсюда путем дальнейшего упрощения в скорописи буквы t в наклонную черту произошел современный символ для обозначения процента.
Существует и другая версия возникновения этого знака. Предполагается, что этот знак произошел в результате нелепой опечатки, совершенной наборщиком. В 1685 году в Париже была опубликована книга – руководство по коммерческой арифметике, где по ошибке наборщик вместо cto напечатал %.
В некоторых вопросах иногда применяют и более мелкие, тысячные доли, так называемые «промилле» (от латинского pro mille – «с тысячи»), обозначаемые, по аналогии процентов. Если мы говорим о предметах из некоторой заданной совокупности - деньгах, зарабатываемых в семье, материалах, продуктах питания, то процент, разумеется,100 сотых частей самого себя. Поэтому обычно говорят, что она «принимается за 100 процентов» .Если речь идет о проценте от данного числа, то это число и принимается за 100%.Изобретение математических знаков и символов значительно облегчило изучение математики и способствовало дальнейшему ее развитию. Еще мы говорили о предметах о некоторой заданной совокупности – деньгах, зарабатываемых в семье, материалах, продуктах питания, то процент, разумеется, 100 сотых частей самого себя. Поэтому обычно говорят, что она «принимается за 100%».
Если речь идет о проценте от данного числа, то это число принимается за 100%. Например, 1% зарплаты – это сотая часть зарплаты; 100% зарплаты – это 100 сотых частей зарплаты. Т.е. вся зарплата Надпись «60%» хлопка на этикетке обозначает, что материал содержит 60 сотых хлопка, т. е. более чем на половину состоит их чистого хлопка. 3,2 жира в молоке означает, что 3,2 сотых массы продукта составляет жир ( или, другими словами, в каждых 100 граммах этого продукта содержится 3,2 грамма жира).
Как известно из практики, с помощью процентов часто показывают изменение той или иной конкретной величины. Такая форма является наглядной числовой характеристикой изменения, характеризующей значимость произошедшего изменения. Например, уровень подростковой преступности повысился на 3%, в этом ничего страшного нет – быть может, эта цифра отражает только естественные колебания уровня. На если он повысился на 30%, то это уже говорит о серьезности проблемы и необходимости изучения причин такого явления и принятия, соответствующих мер.
Изобретение математических знаков и символов значительно облегчило изучение математики и способствовало дальнейшему ее развитию. Как известно из практики, с помощью процентов часто показывают изменение той или иной конкретной величины. Такая форма является наглядной числовой характеристикой изменения, характеризующей значимость произошедшего изменения. Например, уровень подростковой преступности повысился на 3%, в этом ничего страшного нет - быть может, эта цифра отражает только естественные колебания уровня. Но если он повысился на 30%, то это уже говорит о серьезности проблемы и о необходимости изучения причин такого явления и принятия, соответствующих мер.