Задача Коши для дифференциального уравнения первого порядка. Теорема существования решения задачи Коши. Интегральные кривые
Обыкновенным дифференциальным уравнением называется уравнение, которое содержит производные от искомой функции y(x):
(2.1)
где x - независимая переменная, (n) - порядок производной. Наивысший порядок n, входящий в уравнение (2.1) называется порядком дифференциального уравнения.
Общее решение дифференциального уравнения имеет вид:
(2.2)
где c1,c2,...,cn - произвольные постоянные. Их количество определяется порядком уравнения.
Если значения c1,c2,...,cn известны и соответственно равны , то из (2.2) получаем частное решение:
Значения определяются из условий, которые называются дополнительными условиями для уравнения (2.1).
Графики частных решений называются интегральными кривыми для данного дифференциального уравнения. Общее решение можно представить в виде семейства интегральных кривых.
Если дополнительные условия задаются в одной точке, то такая задача называется задачей Коши. Дополнительные условия в задачи Коши называются начальными условиями, а точка x=x0, в которой они задаются - начальной точкой.
Если дополнительные условия задаются в двух точках a и b - “краях” отрезка [a,b], где ищется решение, то такая задача называется краевой задачей.
Дифференциальное уравнение первого порядка:
(2.4)
при заданных начальных условиях y(x0)=y0 называется задачей Коши для дифференциального уравнения первого порядка.
Если мы имеем систему дифференциальных уравнений первого порядка, то задачу Коши удобно записать в векторной форме:
Теорема существования решения задачи Коши
Интегральные кривые
Экзаменационный билет № 10
Корректность вычислительных алгоритмов. Три условия корректности вычислительного алгоритма. Обусловленность вычислительного алгоритма
Корректность вычислительных алгоритмов
1. Результат получен после конечного числа шагов
2. Результат устойчив к малым возмущения входных данных
3. Результат обладает вычислительной устойчивостью.
4.
Метод Монте-Карло для задач вычисления кратных интегралов
Формула (5.33) непосредственно обобщается на кратные интегралы
,
где – объем области интегрирования. Например, для двукратного интеграла с прямоугольной областью интегрирования имеем
.
Модификации метода Эйлера второго порядка точности для дифференциального уравнения первого порядка
Метод трапеции. В этом методе решение имеет вид:
(2.9)
Этот метод неявный, т.к. для определения значений yi+1 необходимо решать нелинейное уравнение (2.9). Метод трапеций имеет второй порядок точности по h.
метод Эйлера-Коши. Данный метод является прямым методом второго порядка точности:
(2.10)
Экзаменационный билет № 11
Требования, предъявляемые к вычислительным алгоритмам. Требования к программным реализациям вычислительной задачи
Требования к вычислительным алгоритмам
1. Экономичность(число элементарных операций)
2. Надлежащая точность(решение задачи с заданной или приемлемой точностью)
3. Экономия памяти(-)
4. Простота
Требования к программным реализациям алгоритмов
1. Надежность(без ошибок)
2. Работоспособность
3. Переносимость
4. Поддерживаемость
5. Простота