Сложение с переходом через десяток
Схема приема: 8 + 5 = 10 + 3 = 13
2 3
Алгоритм приема (правило вычислений) содержит три последовательно выполняемых вычислительных действия:
1) второе слагаемое раскладывается на составные части таким образом, чтобы одна из частей в сумме с первым слагаемым составила число 10;
2) первое слагаемое складывается с частью второго слагаемого, образуя промежуточное число 10;
3) к промежуточному числу 10 прибавляется оставшаяся часть первого слагаемого (во всех случаях здесь имеет место разрядное суммирование) для получения окончательного ответа.
Для овладения приемом ребенок должен: 1) запомнить последовательность действий; 2) уметь быстро подбирать подходящий случай разложения любого однозначного числа на составные части (знать состав однозначных чисел); 3) уметь дополнять любое однозначное число до 10( знать состав числа 10); 4) уметь выполнять разрядное сложение в пределах второго десятка.
Многие дети испытывают большие трудности при освоении этого сложносоставленного приема вычислений. Ориентируясь по линейке, ребенок отмечает первое слагаемое, а затем делает вправо от него нужное количество «шагов» (в соответствии со значением второго слагаемого). Результат последнего «шага» совпадает со значением суммы. Аналогично можно использовать счеты.
Некоторые дети (ведущие кинестетики, о которых говорилось выше) с успехом продолжают использовать пальцевый счет. В этом случае они присчитывают к первому слагаемому единицы, пока хватает пальцев (до 10), а затем, мысленно запоминая полученный десяток, продолжают присчитывать оставшуюся часть второго слагаемого уже к десятку: 8 да еще два пальца – 9,10. Переход на другую руку – еще три пальца – 11,12,13. Фактически этот способ счета моделирует присчитывание по одному, как и использование линейки. При прибавлении чисел больше 5 этот способ несколько тормозит работу ребенка, но по крайней мере дает ему возможность самостоятельно получить результат действия.
В настоящее время на первый план в педагогике начального обучения выходят требования организации личностно-ориентированного обучения, это означает, что в обучающем процессе необходимо учитывать своеобразие и индивидуальность способа мышления и ведущего способа познания каждого ребенка. Дети с превалирующей функцией аналитического мышления легко осваивают этот прием, требующий пошагового выполнения трехступенчатого действия в уме. Дети с превалирующей функцией синтетического мышления осваивают прием с большими трудностями. В некоторых альтернативных учебниках математики для начальных классов ( в первых изданиях стабильного учебника 1968г., в современных учебниках Н.Б. Истоминой) предлагается знакомить детей с этим приемом значительно позже – после того, как они освоят всю нумерацию в пределах 100 и научатся выполнять все виды вычислений без перехода через десяток, в том числе и вида 64 + 12.
Методически ставится задача довести умение ребенка выполнять вычисления во втором десятке до автоматизма. Это означает, что учитель, как правило, ставит задачу - выучить результаты всех случаев сложения и вычитания в пределах второго десятка наизусть. С этой целью в учебнике на каждом уроке этой темы (начало второго класса) дается по три случая для заучивания наизусть. Например: 9+2=11, 9+3=12, 8+3=11.
Всего случаев, требующих запоминания 20. Во всех этих случаях второе слагаемое меньше, чем первое ( в случае, когда второе слагаемое больше первого, можно применить перестановку слагаемых).
9+2=11 9+3=12 8+3=11
7+4=11 8+4=12 9+4=13
9+5=14 8+5=13 7+5=12 6+5=11
9+6=15 8+6=14 7+6=13 6+6=12
9+7=16 8+7=15 7+7=14
8+8=16 9+8=17 9+9=18
В качестве приема, помогающего некоторым детям быстрее запомнить результаты этих вычислений, можно использовать прием опоры на сумму одинаковых слагаемых , поскольку сумма одинаковых слагаемых запоминается детьми значительно легче, чем сумма разных слагаемых.
Например, легко запоминается сумма 5+5=10. Рассматривая любую сумму, в которой одно из слагаемых – число 5 и зная свойства суммы: