Статически определимые и неопределимые системы. Расчет составных конструкций.

Статически определенными называют системы, которые можно решить методами статики твердого тела, т. е. системы, в которых число неизвестных не превышает числа уравнений равновесия сил.

Статически неопределенными называют системы с числом неиз­вестных, превышающим число уравнений равновесия сил, т. е. системы, которые нельзя решать методами статики твердого тела и для решения которых нужно учитывать деформации тела, обусловленные внешними нагрузками.

Если к телу приложена плоская система параллельных сил, то можно использовать только 2 уравнения равновесия сил, чтобы система была статически определена.

Расчет составных конструкций.

Чтобы рассчитать составную конструкцию выполняют следующие действия:

1.К конструкции прикладывают все задаваемые силы.

2. Согласно принципу освобождаемости тел от связей отбра­сывают мысленно внешние связи, заменяя их соответствующими реак­циями.

3. Установив, что число неизвестных реакций связей превышает число уравнений равновесия, которые можно составить для получен­ной системы . сил, конструкцию расчленяют, заменяя внутренние связи соответствующими реакциями.

4. Каждое из тел, входящих в состав конструкции, рассматри­вают как свободное, находящееся под действием задаваемых сил и ре­акций внешних и внутренних связей.

5. Сопоставляя общее число неизвестных величин и число всех урав­нений равновесия сил, которые могут быть составлены после расчле­нения конструкции, устанавливают, является ли задача стати­чески определенной.

6. Составляют уравнения равновесия сил> приложенных к каждому телу.

7. Если задача статически определенна, то полученную систему уравнений решают в наиболее удобной последовательности и опре­деляют все неизвестные величины.

Случаи приведения пространственной системы сил к простейшему виду.

В зависимости от соотношения R0* и М0* возможны следующие случаи приведения:

1) R0*=0 и М0*=0 – система сил находится в равновесии.

2) R0*≠0 и М0*=0 – система сил приводится к равнодействующей, равной главному вектору, л.д. которой проходит через центр приведения (поступательное движение)

3) R0*=0 и М0*≠0 – система сил приводится к паре сил с моментом равным главному моменту с л.д. проходящей через центр приведения (вращательное движение)

4) R0*≠0 и М0*≠0 – система сил приводится к равнодействующей, равной главному вектору с л.д. проходящей через центр приведения (R0* перпендикулярно М0*) (плоско-параллельное движение)

5) R0*≠0 и М0*≠0 (R* параллельно М*) – система сил сводится к главному вектору и главному моменту с л.д. проходящими через центр приведения (винтовое движение)

6) R0*≠0 и М0*≠0(R* перпенд М0*; R* парал М0*) – система сил сходится в динаме, ось которой не проходит через центр приведения (сложное движение)

Приведение системы сил к динаме. Уравнение центральной оси.

R0*≠0 и М0*≠0(R* перпенд М0*; R* парал М0*) – система сил сходится в динаме, ось которой не проходит через центр приведения (сложное движение)

Трение скольжения. Законы трения. Угол и конус трения. Условия равновесия тел на шероховатой поверхности.

Сила трения, возникающая при скольжении одного тела по поверхности другого называется силой трения скольжения.

СТС меньше предельного значения силы трения покоя Fсц, т.к. fn чуть меньше коэффициента трения скольжения (fn˂f).

F зависит только от материалов трущихся поверхностей:

0,01…0,02 – сталь по льду

0,2…0,5 – сталь по стали

0,4…0,6 – резина по асфальту

0,8 – резина по асфальту

Предельное значение силы трения определяется произведением коэффициентов трения скольжения на модуль норм реакции опорной поверхности.

Fтр.макс.=fN – используется лишь в том случае, если известно, что наступает предельное состояния равновесия;

Во всех остальных случаях сила трения определяется из уравнения равновесия.

Законы:

(1)сила трения всегда направлена противоположно направленному движению тела. (2)Величина силы трения не зависит от площади соприкасающихся поверхностей. (3) Величинв силы трения зависит от состояния и материала трущихся поверхностей, а также наличия и вида смазки. (4) Предельное значение силы трения определяется по ф-ле Fтр.макс.=fN

Угол трения – угол между полной реакцией опорной плоскости R и нормальной реакцией N.

Геометрическое место возможных направлений предельной реакции R образует коническую поверхность – конус трения.

Трение качения.

Трение качения

При решении задач обычно силы нормальной реакции прикладывают посередине площадки по которой происходит смятие, а трение качения учитывает пары сил с моментом трения, направленным противоположно возможному движению.

Наши рекомендации