Адаптивные методы прогнозирования
Адаптивные методы позволяют строить описание процессов с учетом различной ценности членов динамического ряда, при этом влияние более поздних членов динамического ряда на дальнейшее развитие процесса учитывается с большим весом, чем более ранних. В связи с этим, появляется возможность более оперативно реагировать на изменяющуюся обстановку и давать на ближайшую перспективу более точные прогнозы.
Наиболее известным и рациональным адаптивным методом является метод гармонических весов. Для осуществления прогноза методом гармонических весов исходный динамический ряд разбивается на фазы (части). Рассмотрим процедуру прогнозирования данным методом на примере из параграфа 2.2.1.:
Год Номер п/п, Объем продаж
2001 1 1280 I – фаза
2002 2 1350 II – фаза
2003 3 1480 III – фаза .
2004 4 1550
2005 5 1660
Каждую фазу аппроксимируем линейной функцией . Для первой фазы функция имеет вид:
,
для второй ,
для третьей .
При имеем:
.
При :
, ,
.
При :
, , .
.
При :
, .
.
При :
.
Рассчитаем приросты по формуле:
.
, .
Рассчитаем гармонические веса. Если самая ранняя информация имеет вес: , то вес информации, относящийся к следующему моменту времени, равен:
т.е. .
Для нашего примера:
; .
Чтобы получить гармонические коэффициенты, удовлетворяющие условию , необходимо гармонические веса разделить на :
; .
Средний прирост:
Прогноз на 2006 год:
Чтобы избежать столь сложных расчетов часто весовые коэффициенты назначаются экспертным путём, например: ; ; ; . Приросты рассчитываются по формуле: . В нашем примере:
;
;
;
.
Средний прирост:
.
Прогноз на 2006 год:
Методы моделирования
В настоящее время моделирование считается наиболее эффективным методом прогнозирования. Алгоритм построения экономико-математической модели включает следующие этапы:
1. формулировка цели прогнозного исследования;
2. выделение в объекте прогнозирования структурных элементов, оказывающих влияние на характер и динамику его развития;
3. выявление внешних факторов, влияющих на развитие объекта прогнозирования;
4. логическое описание взаимосвязей между элементами объекта прогнозирования, внешними и результирующими факторами (построение информационной модели);
5. формализация (математическое описание) взаимосвязей между элементами объекта прогнозирования, внешними и результирующими факторами (показателями);
6. проведение расчетов, корректировка и уточнение модели.
Экономико-математические модели имеют следующие преимущества:
- возможность отражения многосторонних связей между результирующими и влияющими факторами;
- возможность использования экономико-математических моделей при управлении экономическими процессами и при поиске наиболее эффективных (оптимальных) управленческих решений.
В соответствии с математической формой построения выделяют следующие типы экономико-математических моделей:
- экономико-статистические;
- структурные;
- оптимизационные;
- имитационные и др.