Распределение непрерывных случайных величин по закону гаусса (нормальное распределение)

Непрерывная случайная величина Х имеет нормальное распределение (распределение по закону Гаусса), если ее плотность вероятности описывается функцией: распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru , где М – математическое ожидание, распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru - дисперсия, распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru -среднее квадратическое отклонение этой случайной величины.

Кривая распределения имеет симметричную относительно математического ожидания колоколообразную форму (рис. 5.). Положение и крутизна кривой нормального распределения зависит от ее параметров М и распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru : распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru , распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru .

Попадание случайной величины в любой интервал (a;b) определяется, как и для любой непрерывно распределенной величины по формуле: распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru , т.е. в нашем случае получается распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru , а это «неберущийся» интеграл Гаусса, значения которого можно вычислить по специальной таблице (табл.2.). Т.о., распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru , причем распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru

Пример 16.

Случайная величина Х имеет нормальное распределение с M=3 и σ=2. Найти вероятность того, что Х примет свои значения из интервала (2; 5).

Решение:

Используя формулу вероятности попадание случайной величины в любой интервал (a;b) и значения функции Гаусса из таблицы 2, имеем:

распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru

Среди множества значений, которые принимает нормально распределенная случайная величина Х, выделяют 3 стандартных интервала содержащих, соответственно, 68, 95 и 99% всех значений данной случайной величины. Размеры этих интервалов определяются для любой величины ее математическим ожиданием и средним квадратическим отклонением:

· 1-ый стандартный интервал распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru , причем распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru ;

· 2-ой стандартный интервал распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru , причем распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru ;

· 3-ий стандартный интервал распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru , причем распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru .

Рис. 5. График кривой нормального распределения.

ТАБЛИЦЫ ДЛЯ РЕШЕННИЯ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ

Таблица 1.

Значения функции Лапласа распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru

t
0,0 0,398942 0,398922 0,398862 0,398763 0,398623 0,398444 0,398225 0,397966 0,397668 0,397330
0,1 0,396953 0,396536 0,396080 0,395585 0,395052 0,394479 0,393868 0,393219 0,392531 0,391806
0,2 0,391043 0,390242 0,389404 0,388529 0,387617 0,386668 0,385683 0,384663 0,383606 0,382515
0,3 0,381388 0,380226 0,379031 0,377801 0,376537 0,375240 0,373911 0,372548 0,371154 0,369728
0,4 0,368270 0,366782 0,365263 0,363714 0,362135 0,360527 0,358890 0,357225 0,355533 0,353812
0,5 0,352065 0,350292 0,348493 0,346668 0,344818 0,342944 0,341046 0,339124 0,337180 0,335213
0,6 0,333225 0,331215 0,329184 0,327133 0,325062 0,322972 0,320864 0,318737 0,316593 0,314432
0,7 0,312254 0,310060 0,307851 0,305627 0,303389 0,301137 0,298872 0,296595 0,294305 0,292004
0,8 0,289692 0,287369 0,285036 0,282694 0,280344 0,277985 0,275618 0,273244 0,270864 0,268477
0,9 0,266085 0,263688 0,261286 0,258881 0,256471 0,254059 0,251644 0,249228 0,246809 0,244390
1,0 0,241971 0,239551 0,237132 0,234714 0,232297 0,229882 0,227470 0,225060 0,222653 0,220251
1,1 0,217852 0,215458 0,213069 0,210686 0,208308 0,205936 0,203571 0,201214 0,198863 0,196520
1,2 0,194186 0,191860 0,189543 0,187235 0,184937 0,182649 0,180371 0,178104 0,175847 0,173602
1,3 0,171369 0,169147 0,166937 0,164740 0,162555 0,160383 0,158225 0,156080 0,153948 0,151831
1,4 0,149727 0,147639 0,145564 0,143505 0,141460 0,139431 0,137417 0,135418 0,133435 0,131468
1,5 0,129518 0,127583 0,125665 0,123763 0,121878 0,120009 0,118157 0,116323 0,114505 0,112704
1,6 0,110921 0,109155 0,107406 0,105675 0,103961 0,102265 0,100586 0,098925 0,097282 0,095657
1,7 0,094049 0,092459 0,090887 0,089333 0,087796 0,086277 0,084776 0,083293 0,081828 0,080380
1,8 0,078950 0,077538 0,076143 0,074766 0,073407 0,072065 0,070740 0,069433 0,068144 0,066871
1,9 0,065616 0,064378 0,063157 0,061952 0,060765 0,059595 0,058441 0,057304 0,056183 0,055079
2,0 0,053991 0,052919 0,051864 0,050824 0,049800 0,048792 0,047800 0,046823 0,045861 0,044915
2,1 0,043984 0,043067 0,042166 0,041280 0,040408 0,039550 0,038707 0,037878 0,037063 0,036262
2,2 0,035475 0,034701 0,033941 0,033194 0,032460 0,031740 0,031032 0,030337 0,029655 0,028985
2,3 0,028327 0,027682 0,027048 0,026426 0,025817 0,025218 0,024631 0,024056 0,023491 0,022937
2,4 0,022395 0,021862 0,021341 0,020829 0,020328 0,019837 0,019356 0,018885 0,018423 0,017971
2,5 0,017528 0,017095 0,016670 0,016254 0,015848 0,015449 0,015060 0,014678 0,014305 0,013940
2,6 0,013583 0,013234 0,012892 0,012558 0,012232 0,011912 0,011600 0,011295 0,010997 0,010706
2,7 0,010421 0,010143 0,009871 0,009606 0,009347 0,009094 0,008846 0,008605 0,008370 0,008140
2,8 0,007915 0,007697 0,007483 0,007274 0,007071 0,006873 0,006679 0,006491 0,006307 0,006127
2,9 0,005953 0,005782 0,005616 0,005454 0,005296 0,005143 0,004993 0,004847 0,004705 0,004567
3,0 0,004432 0,004301 0,004173 0,004049 0,003928 0,003810 0,003695 0,003584 0,003475 0,003370
3,1 0,003267 0,003167 0,003070 0,002975 0,002884 0,002794 0,002707 0,002623 0,002541 0,002461
3,2 0,002384 0,002309 0,002236 0,002165 0,002096 0,002029 0,001964 0,001901 0,001840 0,001780
3,3 0,001723 0,001667 0,001612 0,001560 0,001508 0,001459 0,001411 0,001364 0,001319 0,001275
3,4 0,001232 0,001191 0,001151 0,001112 0,001075 0,001038 0,001003 0,000969 0,000936 0,000904
3,5 0,000873 0,000843 0,000814 0,000785 0,000758 0,000732 0,000706 0,000681 0,000657 0,000634
3,6 0,000612 0,000590 0,000569 0,000549 0,000529 0,000510 0,000492 0,000474 0,000457 0,000441
3,7 0,000425 0,000409 0,000394 0,000380 0,000366 0,000353 0,000340 0,000327 0,000315 0,000303
3,8 0,000292 0,000281 0,000271 0,000260 0,000251 0,000241 0,000232 0,000223 0,000215 0,000207
3,9 0,000199 0,000191 0,000184 0,000177 0,000170 0,000163 0,000157 0,000151 0,000145 0,000139


Для вычисления значения функции при отрицательных значениях аргумента используется соотношение распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru .

Таблица 2.

Значения функции распределение непрерывных случайных величин по закону гаусса (нормальное распределение) - student2.ru для решения задач

На закон нормального распределения

T Ф(t) t Ф(t) t Ф(t) t Ф(t)
               
0,5 0,8413 0,9772 0,9986
0,1 0,5398 1,1 0,8643 2,1 0,9821 3,1 0,999
0,2 0,5793 1,2 0,884 2,2 0,9861 3,2 0,9993
0,3 0,6179 1,3 0,9032 2,3 0,9893 3,3 0,9995
0,4 0,6554 1,4 0,9192 2,4 0,9918 3,4 0,9997
0,5 0,6915 1,5 0,9332 2,5 0,9938 3,5 0,9998
0,6 0,7257 1,6 0,9452 2,6 0,9953 3,6 0,9998
0,7 0,758 1,7 0,9554 2,7 0,9965 3,7 0,9999
0,8 0,7881 1,8 0,9641 2,8 0,9974 3,8 0,9999
0,9 0,8159 1,9 0,9713 2,9 0,9981 3,9

Наши рекомендации