Действие над комплексными числами в тригонометрической форме, возведение в степень и извлечение корня n-ой степени из комплексного числа. Формула Эйлера
Комплексные числа и действия над ними. Изображение комплексных чисел на комплексной плоскости. Тригонометрическая форма комплексного числа.
Комплексные числа.
Определение. Комплексным числом zназывается выражение , где a и b – действительные числа, i – мнимая единица, которая определяется соотношением:
При этом число a называется действительной частью числа z (a = Re z), а b- мнимой частью (b = Im z).
Если a =Re z =0, то число z будет чисто мнимым, если b = Im z = 0, то число z будет действительным.
Определение. Числа и называются комплексно – сопряженными.
Определение. Два комплексных числа и называются равными, если соответственно равны их действительные и мнимые части:
Определение. Комплексное число равно нулю, если соответственно равны нулю действительная и мнимая части.
Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел.
Если любое действительное число может быть геометрически представлено в виде точки на числовой прямой, то комплексное число представляется точкой на плоскости, координатами которой будут соответственно действительная и мнимая части комплексного числа. При этом горизонтальная ось будет являться действительной числовой осью, а вертикальная - мнимой осью.
у
A(a, b)
r b
j
0 a x
Таким образом, на оси ОХ располагаются действительные числа, а на оси ОY – чисто мнимые.
С помощью подобного геометрического представления можно представлять числа в так называемой тригонометрической форме.
Тригонометрическая форма числа.
Из геометрических соображений видно, что . Тогда комплексное число можно представить в виде:
Такая форма записи называется тригонометрической формой записи комплексного числа.
При этом величина r называется модулемкомплексного числа, а угол наклона j -аргументомкомплексного числа. .
Из геометрических соображений видно:
Очевидно, что комплексно – сопряженные числа имеют одинаковые модули и противоположные аргументы.
Действие над комплексными числами в тригонометрической форме, возведение в степень и извлечение корня n-ой степени из комплексного числа. Формула Эйлера.
Действия с комплексными числами.
Основные действия с комплексными числами вытекают из действий с многочленами.
1) Сложение и вычитание.
2) Умножение.
В тригонометрической форме: ,
С случае комплексно – сопряженных чисел:
3) Деление.
В тригонометрической форме:
4) Возведение в степень.
Из операции умножения комплексных чисел следует, что
В общем случае получим: ,
где n – целое положительное число.
Это выражение называется формулой Муавра.
Формулу Муавра можно использовать для нахождения тригонометрических функций двойного, тройного и т.д. углов.
5) Извлечение корня из комплексного числа.
Возводя в степень, получим:
Отсюда:
Таким образом, корень n – ой степени из комплексного числа имеет n различных значений.
3.Показательная форма комплексного числа. Действия над комплексными числами в показательной форме.
Показательная форма комплексного числа.
Рассмотрим показательную функцию
Можно показать, что функция w может быть записана в виде:
Данное равенство называется уравнением Эйлера.Вывод этого уравнения будет рассмотрен позднее. (См. ).
Для комплексных чисел будут справедливы следующие свойства:
1)
2)
3) где m – целое число.
Если в уравнении Эйлера показатель степени принять за чисто мнимое число (х=0), то получаем:
Для комплексно – сопряженного числа получаем:
Из этих двух уравнений получаем:
Этими формулами пользуются для нахождения значений степеней тригонометрических функций через функции кратных углов.
Если представить комплексное число в тригонометрической форме:
и воспользуемся формулой Эйлера:
Полученное равенство и есть показательная форма комплексного числа.
4.Векторные функции скалярного аргумента. Предел, непрерывность, производная..
z
A(x, y, z)
х
Пусть некоторая кривая в пространстве задана параметрически:
x = j(t); y = y(t); z = f(t);
Радиус- вектор произвольной точки кривой: .
Таким образом, радиус- вектор точки кривой может рассматриваться как некоторая векторная функция скалярного аргумента t. При изменении параметра t изменяется величина и направление вектора .
Запишем соотношения для некоторой точки t0:
Тогда вектор - предел функции (t). .
Очевидно, что
, тогда
.
Чтобы найти производную векторной функции скалярного аргумента, рассмотрим приращение радиус- вектора при некотором приращении параметра t.
; ;
или, если существуют производные j¢(t), y¢(t), f¢(t), то
Это выражение – вектор производная вектора .
Если имеется уравнение кривой:
x = j(t); y = y(t); z = f(t);
то в произвольной точке кривой А(xА, yА, zА) с радиус- вектором
можно провести прямую с уравнением
Т.к. производная - вектор, направленный по касательной к кривой, то
.
Свойства производной векторной функции скалярного аргумента.
1)
2) , где l = l(t) – скалярная функция
3)
4)
Определение. Векторной функцией действительного аргумента называется правило, которое каждому действительному числу ставит в соответствие единственный определенный вектор.