Тригонометрическая форма записи комплексного числа
Если точка z комплексной плоскости имеет декартовые координаты (х, у), т.е. и полярные , то они связаны соотношением (1):
.
По определению, и из (1) получаем:
. (9)
Подставляя в алгебраическую форму записи числа z получаем: . Или
(10)
Определение. Запись комплексного числа в виде (3) называется еготригонометрической формой.
Замечание. Поскольку одну букву писать экономнее нежели несколько, то чаще всего тригонометрическую форму комплексного числа пишут в виде:
, (11)
где .
Теорема. (О равенстве комплексных чисел в тригонометрической форме.)
Два комплексных числа равны тогда и только тогда, когда равны их модули и аргументы.
Доказательство. Так как между всеми комплексными числами и всемиточками комплексной плоскости существует взаимно однозначное соответствие, то равные комплексные числа отождествляются накомплексной плоскости с одной и той же точкой, следовательно, имеют одни и те же полярные координаты, т.е. полярный радиус, который по определению равен модулю комплексного числа, и полярный угол, который по определению равен аргументу комплексного числа. Обратно, если комплексные числа имеют равные модули и аргументы, то они изображаются на комплексной плоскости одной точкой и, следовательно, равны.
Теорема доказана.
Используя соотношения, которые связывают полярные и декартовыекоординаты точки плоскости, можно найти модуль и аргумент комплексного числа зная его действительную и мнимую части.
Сопряжённые числа
Геометрическое представление сопряжённых чисел
Если комплексное число , то число называется сопряжённым (или комплексно сопряжённым) к (обозначается также ). На комплексной плоскости сопряжённые числа получаются зеркальным отражением друг друга относительно вещественной оси. Модуль сопряжённого числа такой же, как у исходного, а их аргументы отличаются знаком.
Переход к сопряжённому числу можно рассматривать как одноместную операцию; перечислим её свойства.
· (сопряжённое к сопряжённому есть исходное).
·
·
·
·
Обобщение: , где — произвольный многочлен с вещественными коэффициентами.
·
·
Значимость сопряжения объясняется тем, что оно является образующей группы Галуа .
1.10
Формула Муавра для комплексных чисел утверждает, что
для любого
Доказательство
Формула Муавра сразу следует из формулы Эйлера и тождества для экспонент , где b — целое число.[1]
Применение
Аналогичная формула применима также и при вычислении корней n-ой степени из ненулевого комплексного числа:
где k = 0, 1, …, n—1.
Из основной теоремы алгебры следует, что корни n-й степени из комплексного числа всегда существуют, и их количество равно n. На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного n-угольника, вписанного в окружность радиуса с центром в нуле.
1.11
1.12