Уравнение поверхности. Уравнения плоскости и прямой в пространстве

Всякое уравнение первой степени относительно координат x, y, z. Ax + By + Cz +D = 0

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнениемплоскости.

Вектор n (A, B, C ), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений: A1 x + B1 y + C1 z + D1 = 0, A2 x + B2 y + C2 z + D2 = 0;

2) двумя своими точками M1(x1, y1, z1) и M2(x2, y2, z2), тогда прямая, через них проходящая, задается уравнениями: Уравнение поверхности. Уравнения плоскости и прямой в пространстве - student2.ru = Уравнение поверхности. Уравнения плоскости и прямой в пространстве - student2.ru ;

3) точкой M1(x1, y1, z1), ей принадлежащей, и вектором a(m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями: Уравнение поверхности. Уравнения плоскости и прямой в пространстве - student2.ru .

Уравнения (3.4) называются каноническими уравнениями прямой.

Векторa называется направляющим вектором прямой.

Параметрические уравнения прямой получим, приравняв каждое из отношений параметру t:

x = x1 +mt, y = y1 + nt, z = z1 + рt.

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y, приходим к уравнениям прямой в проекцияхили к приведенным уравнениям прямой: x = mz + a, y = nz + b.

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения: Уравнение поверхности. Уравнения плоскости и прямой в пространстве - student2.ru .

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор n= [n1, n2], где n1(A1, B1, C1) и n2(A2, B2, C2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

Уравнение поверхности. Уравнения плоскости и прямой в пространстве - student2.ru равносильна системе Уравнение поверхности. Уравнения плоскости и прямой в пространстве - student2.ru ; такая прямая перпендикулярна к оси Ох.

Система Уравнение поверхности. Уравнения плоскости и прямой в пространстве - student2.ru равносильна системе x = x1, y = y1; прямая параллельна оси Oz.

Пример 1.15. Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение. По условию задачи вектор ОА(1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде
x-y+3z+D=0. Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: 1-(-1)+33+D = 0  D = -11. Итак, x-y+3z-11=0.

Пример 1.16. Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y- Уравнение поверхности. Уравнения плоскости и прямой в пространстве - student2.ru z-7=0 угол 60о.

Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не
равно 0, A/Bx+y=0. По формуле косинуса угла между двумя плоскостями

Уравнение поверхности. Уравнения плоскости и прямой в пространстве - student2.ru .

Решая квадратное уравнение 3m2 + 8m - 3 = 0, находим его корни
m1 = 1/3, m2 = -3, откуда получаем две плоскости 1/3x+y = 0 и -3x+y = 0.

Наши рекомендации