Деление суждений по модальности
В логике мы до сих пор рассматривали простые суждения, которые называются ассерторическими, а также сложные суждения, составленные из простых. В них утверждается или отрицается наличие определенных связей между предметом и его свойствами или констатируется отношение между двумя или большим числом предметов. Например, «Школьники — учащиеся»; «Объем конуса равен 1/3 площади основания, умноженной на высоту»; «Яблоко сладкое и красное»; «Я эту работу не выполню в срок»; «Если будет плохая погода, то мы не поедем на теплоходе» и др. Общая форма таких простых высказываний (суждений): «5 есть (не есть) Р». Из простых суждений образуются сложные. Например, «Если S есть (не есть) Р, то S1 есть (не есть) P1».
В этих ассерторических суждениях не установлен характер связи между субъектом и предикатом. Характер связи между субъектом и предикатом или между отдельными простыми суждениями в сложном суждении раскрывается в модальном суждении. Из вышеприведенных суждений можно образовать такие, например, модальные суждения: «Несомненно, что все школьники — учащиеся», «Доказано, что в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы», «Хорошо, что яблоко сладкое и красное», «Возможно, что я эту работу не выполню в срок», «Вероятно, что если будет плохая погода, то мы не поедем на теплоходе». Мы видим, что модальные суждения не просто утверждают или отрицают некоторые связи, а дают оценку этих связей с какой-то точки зрения.
О предмете А можно просто сказать, что он имеет свойство В (это будет ассерторическое суждение). Но можно сверх того уточнить, является ли эта связь А и В необходимой или, наоборот, случайной; хорошо ли, что А есть В или это плохо; доказано, что А есть В или не доказано, а только есть предположение, и т. д. В результате таких уточнений мы получаем модальные суждения различных типов. Приведем другие примеры модальных суждений: «Возможно, на Марсе есть жизнь», «Доказано, что в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, т. е. а2 + b2=с2»; «При красном свете светофора проезд транспорта запрещен» и др. В модальном суждении к ассерторическому суждению приписывается тот или иной модальный оператор (модальное понятие): возможно, доказано, необходимо, запрещено, обязательно, плохо и др.Структура простых модальных суждений такая: М (S есть Р) или М (S не есть Р),
где М обозначает модальный оператор (модальное понятие).
Но как было уже сказано, модальными могут быть и сложные суждения. Если а и b — простые суждения, то из сложных ассерторических суждений: aÙb, aÚb, aÚ×b, a®b, aºb — можно получить соответствующие сложные модальные суждения: M (aÙb); M (aÚb); M (aÚ×b); M (a®b); M (aºb).
В каждую из групп модальностей входят три основных модальных понятия. Второе из них называется слабой характеристикой, первое и третье — соответственно сильной положительной и сильной отрицательной характеристиками. Иногда в дополнение к трем основным модальным понятиям вводится четвертое, которое может употребляться для обозначения объединения сильного положительного и нейтрального.
Логические и онтологические модальности объединяются вобщий вид — алетические модальности14. Они включают такие модальные операторы или категории модальности: необходимость и случайность, возможность и невозможность. Слова «необходимо», «возможно», «случайно» в обыденном языке употребляются в самых различных смыслах.
Диалектико-материалистическая философия изучает категории «необходимость», «случайность», «возможность» и другие с их содержательной стороны. Формальная логика изучает существующие между ними формальные зависимости. Всеобщность модальных категорий состоит в их приложимости к любой области действительности.
Алетические модальности обозначаются так: «ÿ А» — «необходимо А»; «Ñ А» — «случайно Л»; « ◊ А» — «возможно А»;x~◊A — «невозможно А»(знак «~»обозначает отрицание).
Иногда их обозначают так: «Lp»— «необходимо р», «Мр»— « возможно» .
Алетические модальности (логические и онтологические) часто содержательно истолковывают так: необходимыми считают логические законы, а также законы, выявленные различными науками (естественными, математическими, общественными и техническими), и все следствия из этих законов. Невозможными считают суждения, противоречащие этим законам, отрицания этих законов или их следствий. Случайными считают суждения, не являющиеся законами или их следствиями, но и не противоречащие законам или их следствиям. Возможными считают сложения, не противоречащие законам или их следствиям.Взаимосвязь алетических модальностей
Некоторые алетическне модальности в ряде систем можно определять одну через другую («=» обозначает «равно по определению», «Ù»— конъюнкцию, «Ú» —дизъюнкцию, «~» отрицание, ««»— эквивалентно, «®» — импликацию). Например,
1А=
Некоторые важные связи, характеризующие алетические модальности, выражены следующими формулами:
(1) («Earn необходимо, что А, то А»);
(2) («Если А, то возможно, что А»);
(3) («Необходимо, что А, тогда и только тогда, когда невозможно, что не-А»);
(4) («Возможно, что А, тогда и только тогда, когда не необходимо, что не-А»).