Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА

Теорема.Вероятность отклонения непрерывной случайной величины от её математического ожидания на величину сколь угодно малого числа ε>0 находится по формуле:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Доказательство:

Так как

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

то

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Следовательно,

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Правило 3 ‒ х сигм.

Пусть Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru .

Подставим значение ε в формулу, получим:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Вывод:

Итак, с вероятностью сколь угодно близкой к единице можно утверждать, что модуль отклонения нормально распределенной случайной величины от её математического ожидания не превосходит утроенного среднего квадратического отклонения.

Центральная предельная теорема.

Центральная предельная теорема представляет собой группу теорем, посвященных установлению условий, при которых возникает нормальный закон распределения. Среди этих теорем важнейшее место принадлежит теореме Ляпунова.

Теорема Ляпунова.

Если случайная величина Х представляет собой сумму большого числа взаимно ‒ независимых случайных величин, то есть Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru , влияние каждой из которых на всю сумму ничтожно мало, то случайная величина Х имеет распределение, не ограниченно приближающееся к нормальному распределению.

Начальные и центральные моменты непрерывной случайной величины, асимметрия и эксцесс.

Асимметрия и эксцесс.

В прикладных задачах, например в математической ста­тистике, при теоретическом изучении эмпирических распре­делений, отличающихся от нормального распределения, воз­никает необходимость количественных оценок этих различий. Для этой цели введены специальные безразмерные характеристики.

Определение. Асимметрией теоретического распределения называется отношение центрального момента третьего поряд­ка к кубу среднего квадратического отклонения:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Определение. Эксцессом теоретического распределения на­зывается величина, определяемая равенством:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

где Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru ‒ центральный момент четвертого порядка.

Для нормального распределения Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru . При отклоне­нии от нормального распределения асимметрия положительна, если "длинная" и более пологая часть кривой распределения расположена справа от точки на оси абсцисс, соответствую­щей моде; если эта часть кривой расположена слева от моды, то асимметрия отрицательна (рис. 1, а, б).

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Эксцесс характеризует "крутизну" подъема кривой распре­деления по сравнению с нормальной кривой: если эксцесс поло­жителен, то кривая имеет более высокую и острую вершину; в случае отрицательного эксцесса сравниваемая кривая имеет более низкую и пологую вершину.

Следует иметь в виду, что при использовании указанных характеристик сравнения опорными являются предположения об одинаковых величинах математического ожидания и дис­персии для нормального и теоретического распределений.

Пример. Пусть дискретная случайная величина Х задана законом распределения:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Найти: асимметрию и эксцесс теоретического распределения.

Решение:

Найдем сначала математическое ожидание слу­чайной величины:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Затем вычисляем начальные и центральные моменты 2, 3 и 4-го порядков и среднее квадратическое отклонение:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Теперь по формулам находим искомые вели­чины:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

В данном случае "длинная" часть кривой распределения рас­положена справа от моды, причем сама кривая является не­сколько более островершинной, чем нормальная кривая с теми же величинами математического ожидания и дисперсии.

Неравенство Чебышева.

Теорема.Для произвольной случайной величины Х и любого числа

Ԑ>0 справедливы неравенства:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

‒ вероятность противоположного неравенства.

Пример.

Средний расход воды на животноводческой ферме составляет 1000 л в день, а среднее квадратичное отклонение этой случайной величины не превышает 200 л. Оценить вероятность того, что расход воды на ферме в любой выбранный день не превзойдет 2000 л, используя неравенство Чебышева.

Решение:

Пусть X –расход воды на животноводческой ферме (л).

По условию М (Х) = 1000.

Дисперсия D (X) = Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru . Так как границы интервала 0 < X < 2000 симметричны относительно математического ожидания М (Х) = 1000, то для оценки вероятности искомого события можно применить неравенство Чебышева:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

То есть не менее, чем 0,96 Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru .

Для биномиального распределения неравенство Чебышева примет вид:

Лекция 10. ВЕРОЯТНОСТЬ ПОПАДАНИЯ В ИНТЕРВАЛ. ПРАВИЛО ТРЕХ СИГМ. НЕРАВЕНСТВО ЧЕБЫШЕВА. ЗАКОН БОЛЬШИХ ЧИСЕЛ. ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА - student2.ru

так как M (x) = np; D(x)=npq.

Наши рекомендации