Тригонометрическая и показательная формы комплексного числа

В данном параграфе больше речь пойдет о тригонометрической форме комплексного числа. Показательная форма в практических заданиях встречается значительно реже.

Любое комплексное число Тригонометрическая и показательная формы комплексного числа - student2.ru (кроме нуля) можно записать в тригонометрической форме: Тригонометрическая и показательная формы комплексного числа - student2.ru , где Тригонометрическая и показательная формы комплексного числа - student2.ru – модуль комплексного числа, а Тригонометрическая и показательная формы комплексного числа - student2.ru – аргумент комплексного числа. Не разбегаемся, всё проще, чем кажется.

Изобразим на комплексной плоскости число Тригонометрическая и показательная формы комплексного числа - student2.ru . Для определённости и простоты объяснений расположим его в первой координатной четверти, т.е. считаем, что Тригонометрическая и показательная формы комплексного числа - student2.ru :

Тригонометрическая и показательная формы комплексного числа - student2.ru

Определение: Модулем комплексного числа Тригонометрическая и показательная формы комплексного числа - student2.ru называется расстояние от начала координат до соответствующей точки комплексной плоскости. Попросту говоря, модуль – это длинарадиус-вектора, который на чертеже обозначен красным цветом.

Модуль комплексного числа z стандартно обозначают: |z| или r. По теореме Пифагора легко вывести формулу для нахождения модуля комплексного числа: Тригонометрическая и показательная формы комплексного числа - student2.ru .

Данная формула справедлива для любыхзначений «а» и «бэ».

Определение: Аргументом комплексного числа z называется уголφ, проведенный против часовой стрелки между положительной полуосью действительной оси Re(z) и радиус-вектором, проведенным из начала координат к соответствующей точке. Аргумент не определён для единственного числа: z =0.

Аргумент комплексного числа z стандартно обозначают: φ или arg(z).

Из геометрических соображений получается следующая формула для нахождения аргумента:

Тригонометрическая и показательная формы комплексного числа - student2.ru .

Внимание!Данная формула работает только в правой полуплоскости! Если комплексное число располагается не в 1-ой и не 4-ой координатной четверти, то формула будет немного другой. Эти случаи мы тоже разберем.

Но сначала рассмотрим простейшие примеры, когда комплексные числа располагаются на координатных осях.

Пример 7:

Представить в тригонометрической форме комплексные числа: Тригонометрическая и показательная формы комплексного числа - student2.ru , Тригонометрическая и показательная формы комплексного числа - student2.ru , Тригонометрическая и показательная формы комплексного числа - student2.ru , Тригонометрическая и показательная формы комплексного числа - student2.ru .

Выполним чертёж:

Тригонометрическая и показательная формы комплексного числа - student2.ru

На самом деле задание устное. Для наглядности перепишем тригонометрическую форму комплексного числа: Тригонометрическая и показательная формы комплексного числа - student2.ru

Запомним намертво, модуль – длина (которая всегда неотрицательна), аргумент – угол.

1) Представим в тригонометрической форме число Тригонометрическая и показательная формы комплексного числа - student2.ru . Найдем его модуль и аргумент. Очевидно, что Тригонометрическая и показательная формы комплексного числа - student2.ru . Формальный расчет по формуле: Тригонометрическая и показательная формы комплексного числа - student2.ru .

Очевидно, что Тригонометрическая и показательная формы комплексного числа - student2.ru (число лежит непосредственно на действительной положительной полуоси). Таким образом, число в тригонометрической форме: Тригонометрическая и показательная формы комплексного числа - student2.ru .

Ясно, как день, обратное проверочное действие: Тригонометрическая и показательная формы комплексного числа - student2.ru

2) Представим в тригонометрической форме число Тригонометрическая и показательная формы комплексного числа - student2.ru . Найдем его модуль и аргумент. Очевидно, что Тригонометрическая и показательная формы комплексного числа - student2.ru .

Формальный расчет по формуле:

Тригонометрическая и показательная формы комплексного числа - student2.ru .

Очевидно, что Тригонометрическая и показательная формы комплексного числа - student2.ru (или 90 градусов). На чертеже угол обозначен красным цветом. Таким образом, число в тригонометрической форме: Тригонометрическая и показательная формы комплексного числа - student2.ru .

Используя таблицу значений тригонометрических функций, легко обратно получить алгебраическую форму числа (заодно выполнив проверку):

Тригонометрическая и показательная формы комплексного числа - student2.ru

3) Представим в тригонометрической форме число Тригонометрическая и показательная формы комплексного числа - student2.ru . Найдем его модуль и аргумент. Очевидно, что Тригонометрическая и показательная формы комплексного числа - student2.ru . Формальный расчет по формуле:

Тригонометрическая и показательная формы комплексного числа - student2.ru .

Очевидно, что Тригонометрическая и показательная формы комплексного числа - student2.ru (или 180 градусов). На чертеже угол обозначен синим цветом. Таким образом, число в тригонометрической форме: Тригонометрическая и показательная формы комплексного числа - student2.ru .

Проверка: Тригонометрическая и показательная формы комплексного числа - student2.ru

4) И четвёртый интересный случай. Представим в тригонометрической форме число Тригонометрическая и показательная формы комплексного числа - student2.ru . Найдем его модуль и аргумент. Очевидно, что Тригонометрическая и показательная формы комплексного числа - student2.ru . Формальный расчет по формуле: Тригонометрическая и показательная формы комплексного числа - student2.ru .

Аргумент можно записать двумя способами: Первый способ: Тригонометрическая и показательная формы комплексного числа - student2.ru (270°), и, соответственно: Тригонометрическая и показательная формы комплексного числа - student2.ru . Проверка:

Тригонометрическая и показательная формы комплексного числа - student2.ru

Однако более стандартно следующее правило: Если угол больше 180 градусов, то его записывают со знаком минус и противоположной ориентацией («прокруткой») угла: Тригонометрическая и показательная формы комплексного числа - student2.ru (-90°), на чертеже угол отмечен зеленым цветом. Легко заметить, что Тригонометрическая и показательная формы комплексного числа - student2.ru и Тригонометрическая и показательная формы комплексного числа - student2.ru – это один и тот же угол.

Таким образом, запись принимает вид: Тригонометрическая и показательная формы комплексного числа - student2.ru

Внимание!Ни в коем случае нельзя использовать четность косинуса, нечетность синуса и проводить дальнейшее «упрощение» записи:

Тригонометрическая и показательная формы комплексного числа - student2.ru

Аргументы быть одинаковы синуса и косинуса должны быть одинаковы для тригонометрической формы записи комплексного числа.

Кстати, полезно вспомнить внешний вид и свойства тригонометрических и обратных тригонометрических функций, справочные материалы находятся в последних параграфах страницы Графики и свойства основных элементарных функций. И комплексные числа усвоятся заметно легче!

В оформлении простейших примеров так и следует записывать: «очевидно, что модуль равен… очевидно, что аргумент равен...». Это действительно очевидно и легко решается устно.

Перейдем к рассмотрению более распространенных случаев. Как уже отмечалось, с модулем проблем не возникает, всегда следует использовать формулу Тригонометрическая и показательная формы комплексного числа - student2.ru . А вот формулы для нахождения аргумента будут разными, это зависит от того, в какой координатной четверти лежит число Тригонометрическая и показательная формы комплексного числа - student2.ru .

При этом возможны три варианта (их полезно переписать к себе в тетрадь):

1) Если Тригонометрическая и показательная формы комплексного числа - student2.ru (1-ая и 4-ая координатные четверти, или правая полуплоскость), то аргумент нужно находить по формуле Тригонометрическая и показательная формы комплексного числа - student2.ru .

2) Если Тригонометрическая и показательная формы комплексного числа - student2.ru (2-ая координатная четверть), то аргумент нужно находить по формуле Тригонометрическая и показательная формы комплексного числа - student2.ru .

3) Если Тригонометрическая и показательная формы комплексного числа - student2.ru (3-я координатная четверть), то аргумент нужно находить по формуле Тригонометрическая и показательная формы комплексного числа - student2.ru .

Пример 8

Представить в тригонометрической форме комплексные числа: Тригонометрическая и показательная формы комплексного числа - student2.ru , Тригонометрическая и показательная формы комплексного числа - student2.ru , Тригонометрическая и показательная формы комплексного числа - student2.ru , Тригонометрическая и показательная формы комплексного числа - student2.ru .

Коль скоро есть готовые формулы, то чертеж выполнять не обязательно. Но есть один момент: когда вам предложено задание представить число в тригонометрической форме, то чертёж лучше в любом случае выполнить. Дело в том, что решение без чертежа часто бракуют преподаватели, отсутствие чертежа – серьёзное основание для минуса и незачета. Эх, сто лет от руки ничего не чертил, держите:

Тригонометрическая и показательная формы комплексного числа - student2.ru

Мы представим в комплексной форме числа Тригонометрическая и показательная формы комплексного числа - student2.ru и Тригонометрическая и показательная формы комплексного числа - student2.ru , первое и третье числа будут для самостоятельного решения. Представим в тригонометрической форме число Тригонометрическая и показательная формы комплексного числа - student2.ru . Найдем его модуль и аргумент.

Тригонометрическая и показательная формы комплексного числа - student2.ru

Поскольку Тригонометрическая и показательная формы комплексного числа - student2.ru (случай 2), то

Тригонометрическая и показательная формы комплексного числа - student2.ru – вот здесь нечетностью арктангенса воспользоваться нужно. К сожалению, в таблице отсутствует значение Тригонометрическая и показательная формы комплексного числа - student2.ru , поэтому в подобных случаях аргумент приходится оставлять в громоздком виде:

Тригонометрическая и показательная формы комплексного числа - student2.ru – это число Тригонометрическая и показательная формы комплексного числа - student2.ru в тригонометрической форме.

Расскажу о забавном способе проверки. Если вы будете выполнять чертеж на клетчатой бумаге в том масштабе, который у меня (1 ед. = 1 см), то можно взять линейку и измерить модуль в сантиметрах. Если есть транспортир, то можно непосредственно по чертежу измерить и угол.

Перечертите чертеж в тетрадь и измерьте линейкой расстояние от начала координат до числа Тригонометрическая и показательная формы комплексного числа - student2.ru . Вы убедитесь, что действительно Тригонометрическая и показательная формы комплексного числа - student2.ru . Также транспортиром можете измерить угол и убедиться, что действительно Тригонометрическая и показательная формы комплексного числа - student2.ru .

Представим в тригонометрической форме число Тригонометрическая и показательная формы комплексного числа - student2.ru . Найдем его модуль и аргумент. Тригонометрическая и показательная формы комплексного числа - student2.ru

Поскольку Тригонометрическая и показательная формы комплексного числа - student2.ru (случай 1), то Тригонометрическая и показательная формы комплексного числа - student2.ru , или (-60°).

Таким образом:

Тригонометрическая и показательная формы комплексного числа - student2.ru – число Тригонометрическая и показательная формы комплексного числа - student2.ru в тригонометрической форме.

А вот здесь, как уже отмечалось, минусы не трогаем.

Кроме забавного графического метода проверки, существует и проверка аналитическая, которая уже проводилась в Примере 7. Используем таблицу значений тригонометрических функций, при этом учитываем, что угол Тригонометрическая и показательная формы комплексного числа - student2.ru – это в точности табличный угол Тригонометрическая и показательная формы комплексного числа - student2.ru (или 300 градусов):

Тригонометрическая и показательная формы комплексного числа - student2.ru – это число Тригонометрическая и показательная формы комплексного числа - student2.ru в исходной алгебраической форме.

Числа Тригонометрическая и показательная формы комплексного числа - student2.ru и Тригонометрическая и показательная формы комплексного числа - student2.ru представьте в тригонометрической форме самостоятельно. Краткое решение и ответ в конце урока.

В конце параграфа кратко о показательной форме комплексного числа. Любое комплексное число Тригонометрическая и показательная формы комплексного числа - student2.ru (кроме нуля) можно записать в показательной форме: Тригонометрическая и показательная формы комплексного числа - student2.ru , где Тригонометрическая и показательная формы комплексного числа - student2.ru – это модуль комплексного числа, а Тригонометрическая и показательная формы комплексного числа - student2.ru – аргумент комплексного числа.

Что нужно сделать, чтобы представить комплексное число в показательной форме? Почти то же самое: выполнить чертеж, найти модуль и аргумент. И записать число в виде Тригонометрическая и показательная формы комплексного числа - student2.ru . Можно показать, что показательная функция чисто мнимого аргумента равна скобке с косинусом, синусом и i, которая, помноженная на модуль, равна самому комплексному числу.

Например, для числа Тригонометрическая и показательная формы комплексного числа - student2.ru предыдущего примера у нас найден модуль и аргумент: Тригонометрическая и показательная формы комплексного числа - student2.ru , Тригонометрическая и показательная формы комплексного числа - student2.ru . Тогда данное число в показательной форме запишется следующим образом: Тригонометрическая и показательная формы комплексного числа - student2.ru .

Число Тригонометрическая и показательная формы комплексного числа - student2.ru в показательной форме будет выглядеть так: Тригонометрическая и показательная формы комплексного числа - student2.ru

Число Тригонометрическая и показательная формы комплексного числа - student2.ru – будет выглядеть так: Тригонометрическая и показательная формы комплексного числа - student2.ru . И т.д.

Единственный совет – не трогаем показатель экспоненты, там не нужно переставлять множители, раскрывать скобки и т.п. Комплексное число в показательной форме записывается строго по форме Тригонометрическая и показательная формы комплексного числа - student2.ru .

Наши рекомендации