Вопрос № 16. Теория систем и системология, развитие направлений

Общая теория систем (теория систем) — научная и методологическая концепция исследования объектов, представляющих собой системы. Теория систем получила значительное развитие в 1950-ых годах после публикации Общей теории систем Людвига Берталанфи. Вслед за этим системный подход стал широко применяться вначале в технике, а затем и в фундаментальных науках. Теория систем с единых позиций анализирует и описывает произвольную систему как группу выделенных и связанных объектов, что особенно важно для изучения сложных систем.

Термин "система" в переводе с греческого означает целое, составленное из частей, или соединение частей в целое. Таким образом, система состоит из отдельных частей — элементов, причем эти элементы взаимосвязаны. Характеристики системы определяются не столько характеристиками ее элементов, сколько характеристиками взаимосвязей. Одни и те же элементы, в зависимости от объединяющей их взаимосвязи, могут образовывать различные по своим свойствам системы, как, например, из одних и тех же кирпичей можно складывать самые различные сооружения. Поэтому любая система характеризуется элементами и связями между ними.

Под системой понимают единство связанных друг с другом предметов и явлений в природе и обществе.

Система в целом качественно отличается от суммы составляющих ее частей, имеет свойства, которых нет у ее элементов. Причем эти новые свойства определяются именно взаимосвязями элементов.

Природа элементов, входящих в систему, может быть самой разнообразной. Элементами могут быть:

• материальные объекты (небесные тела, детали станка и т.д.);

• субъекты (рабочие, служащие, анатомические органы живых существ и т.д.);

• идеальные объекты (системы аксиом, система основных понятий механики, проект технологических линий и т.д.).

Системы бывают как искусственными, созданными руками человека (например, самолет, завод, система счисления), так и естественными. Примерами естественных систем могут служить кристаллы, Солнечная система, живые организмы.

1.Основные признаки систем

1. Система — это прежде всего целостная совокупность элементов. Это означает, что, с одной стороны, система - целостное образование и, с другой — в ее составе отчетливо могут быть выделены целостные объекты (элементы).

2. Наличие устойчивых связей. Система существует как некоторое целостное образование, когда мощность (сила) существенных связей между элементами системы на интервале времени, не равном нулю, больше, чем мощность связей этих же элементов с внешней средой. Для информационных связей оценкой потенциальной мощности может служить пропускная способность данной информационной системы, а реальной мощности - действительная величина потока информации. Однако в общем случае при оценке мощности информационных связей необходимо учитывать качественные характеристики передаваемой информации (ценность, полезность, достоверность и т. п.).

3. Организация. Это свойство характеризуется наличием определенной организации, что проявляется в снижении энтропии (степени неопределенности) системы H{S} по сравнению с энтропией системоформирующих факторов H{F), определяющих возможность создания системы.

4. Эмерджентность. Эмерджентность предполагает наличие таких качеств (свойств), которые присущи системе в целом, но не свойственны ни одному из ее элементов в отдельности.

Любой объект, который обладает всеми рассматриваемыми свойствами можно называть системой. Одни и те же элементы (в зависимости от принципа, используемого для их объединения в систему) могут образовывать различные по свойствам системы. Поэтому характеристики системы в целом определяются не только и не столько характеристиками составляющих ее элементов, сколько характеристиками связей между ними.

Системология — наука о системах и системной организации процессов и явлений природы, науки, техники, общественных формаций, функциональных образований и структур. Считается, что этот термин был предложен в 1965 г. отечественным философом И.Б. Новиковым. Как междисциплинарная наука, системология проникает в естественнонаучные и гуманитарные, теоретические и прикладные науки, обобщая различные данные о системах и выводя основные закономерности их возникновения, развития и преобразования.

Системология трактует объекты как системы, содержащие структуру, и явления как системы с многоуровневой, сложной организацией взаимодействий и отношений, включая внутренние и внешние связи. Системология формировалась путём последовательного осмысления понятий сложных, больших, самоорганизующихся, функциональных систем, синергизма явлений и др.

С помощью теории систем системология объединяет все те направления конкретных наук, которые занимаются системами и систематизацией, и обеспечивает для них методологический теоретический базис. В системологии формируется методология изучения, проектирования, управления и использования природной системности мира и его базовых категорий.

Направления:

Ряд перспективных направлений, которые решают основные задачи теории систем:
Факторный анализ, т.е. процедуры изоляции посредством использования математического анализа факторов в многопеременных явлениях в различных областях знания.

«Классическая» теория систем применяет классическую математику. Ее цель – установить принципы, применимые к системам вообще или к их определенным подклассам (например, к закрытым и открытым системам); разработать средства для их исследования и описания и применить эти средства к конкретным случаям.

Использование вычислительных машин и моделирование. Системы дифференциальных уравнений, применяемые для «моделирования» или спецификации систем, обычно требуют много времени для своего решения, даже если они линейны и содержат немного переменных; нелинейные системы уравнений разрешимы только в некоторых частных случаях. По этой причине с использованием вычислительных машин открылся новый подход к системным исследованиям.

Теория ячеек, изучающая системы, составленные из подъединиц с определенными граничными условиями, причем между этими подъединицами имеют место процессы переноса. Вполне понятно, что при наличии в системе трех и более ячеек математические трудности становятся чрезвычайно большими. В этом случае анализ возможен лишь благодаря использованию преобразований Лапласа и аппарата теорий сетей и графов.

Теория множеств. Общие формальные свойства систем и формальные свойства закрытых и открытых систем и т. д. могут быть аксиоматизированы в языке теории.

Теория графов. Многие системные проблемы относятся к структурным и топологическим свойствам систем, а не к их количественным отношениям. В теории графов, особенно в теории ориентированных графов (диграфов), изучаются реляционные структуры, представляемые в топологическом пространстве.

Теория сетей в свою очередь связана с теориями множеств, графов, ячеек и т. д. Она применяется к анализу таких систем, как нервные сети.

Кибернетика является теорией систем управления, в основе которых лежит связь (передача информации) между системой и средой и внутри системы, а также управление (обратная связь) функциями системы относительно среды.

Теория информации К. Шеннон и У. Уивер. Считается, что понятие информации можно использовать в качестве меры организации. Ее применения в науке до сих пор весьма незначительны.

Теория автоматов представляет собой теорию абстрактных автоматов, имеющих вход, выход, иногда способных действовать методом проб и ошибок и обучаться. Общей моделью теории автоматов является машина Тьюринга, которая представляет собой абстрактную машину, способную печатать (или стирать) на ленте конечной длины цифры 1 и 0. Можно показать, что любой сколь угодно сложный процесс может моделироваться машиной Тьюринга, если этот процесс можно выразить конечным числом операций.

Теорию игр, хотя она и несколько отличается от других рассмотренных системных подходов, все же можно поставить в ряд наук о системах. В ней рассматривается поведение «рациональных» игроков, пытающихся достичь максимальных выигрышей и минимальных потерь за счет применения соответствующих стратегий в игре с соперником (или природой). Следовательно, теория игр по существу рассматривает «системы», включающие антагонистические «силы».

Теория решений является математической теорией, изучающей условия выбора между альтернативными возможностями.

Теория очередей рассматривает оптимизацию обслуживания при массовых запросах.

Наши рекомендации