Моделирование в математическом образовании дошкольников
Содержание математического развития дошкольников.Методические принципы отбора содержания курса «Математическое развитие дошкольников»
Новое осмысление психологических предпосылок построения курса математического развития ребенка дошкольного возраста повлекло за собой его методическую перестройку. В основу методики математического развития ребенка легло требование реализации моделирующей деятельности с математическими понятиями и отношениями. Такая деятельность ребенка принимается в данной концепции за ведущую.
Сформулируем основные принципы отбора содержания
курса развития математических понятий и представлений дошкольников:
Принцип преимущественного использования модельного подхода к обучению, т. е. возможности представления понятий в виде вещественных и графических моделей, обеспечивающих наглядно-действенный и наглядно-образный характер обучения.
Принцип системности, обеспечивающий взаимосвязь изучаемых в курсе понятий.
Принцип преемственности, обеспечивающий целенаправленный образовательный процесс ребенка по возрастам и подготовку к изучению математики в школе.
Соблюдение первого принципа позволяет осуществлять математическое развитие дошкольника на основедействия с моделями изучаемых объектов. Моделирующая деятельность ребенка на разных возрастных этапах реализуется в различных видах: на раннем этапе — в виде предметного конструирования, далее — в виде графического, а затем символического моделирования.
При этом дети учатся строить саму модель, используя всевозможную вещественную наглядность (палочки, бечевку, геометрические фигуры, собственные пальцы, различные конструкторы, лист бумаги и т. п.), постепенно к более старшему возрасту переходя к использованию графических средств (схема, рисунок, чертеж), и на завершающем этапе начинают активно использовать символику (цифры, буквы, знаки действий, математические записи).
Вновь приобретаемые знания и умения математического характера не являются самоцелью занятия, а играют развивающую роль, так как они становятся базой для формирования обобщенных способов действий с математическими объектами и общих приемов умственной деятельности (сравнения, обобщения, абстрагирования, классификации, анализа и синтеза.) В свою очередь, формирование этих умственных операций влечет за собой более интенсивное формирование и развитие словесно-логических (понятийных) форм мышления,
составляющих для ребенка этого возраста зону ближайшее развития. Таким образом соблюдается первый и важнейш постулат организации развивающего обучения.
Второй принцип состоит в том, что каждое новое понят должно быть органически связано как с рассмотренными р нее, так и с последующими, т. е. программа курса должна пре ставлять собой систему взаимосвязанных понятий.
Это обязательное требование к построению обучающего к; са высказано еще Л.С. Выготским (см. лекцию 6). Не мен важным этот принцип является и для построения развивав щего курса, поскольку только системный подход в мат матической подготовке может обеспечить возможность фо мирования цепочек взаимосвязанных ассоциаций, лежащ в основе продуктивного мышления.
Следование этому принципу с учетом рассмотренного в ше нового подхода к психологическому обоснованию курса м тематического развития ребенка и принципа моделируемост может привести к неожиданным оценкам степени сложности и посильности заданий.
Например, расширение геометрической части программы может привести к значительному видоизменению традиционного списка понятий, в частности, появляются понятия топологического характера: замкнутость и незамкнутость, внутренняя и внешняя часть фигуры, ее граница, исследование и моделирование пространственных тел; элементы проективной геометрии: проекции тел и фигур, их пересечения и объединения, изображения объемных тел на плоскости.
Одним из оснований к введению в курс этих понятий явля ются результаты экспериментов психологического характера, проведенных с целью исследования того, как ребенок открывает для себя пространственные отношения. Ж. Пиаже пишет, что, как выяснилось в ходе экспериментов, порядок развития идей ребенка в области геометрии кажется обратным порядку их исторического открытия.
Научная геометрия начинается с системы Евклида, изучающей фигуры, развивается в XVII столетии в так называемую проективную геометрию, имеющую дело с перспективой, и, наконец, в XIX столетии приходит к топологии, описывающей наиболее общие пространственные отношения, не изменяющиеся при любых преобразованиях фигур без разрывов и склеивания: например, открытые и замкнутые структуры, внешнее и внутреннее.
«Ребенок, — пишет Ж. Пиаже, — начинает с последнего: его первые открытия являются топологическими. В возрасте 3 лет он легко различает открытые и замкнутые фигуры. Если вы попросите его срисовать квадрат или треугольник, он нарисует замкнутый круг; он рисует крест двумя открытыми линиями. Если вы показываете ему рисунок большого круга с маленьким кругом внутри, он может воспроизвести это отношение, но может также нарисовать маленкий круг вне большого, или соприкасающимся с ним краем. И все это может сделать прежде, чем сумеет нарисовать прямоугольник или выразить эвклидовы характеристики фигуры (число сторон, углов и т. д.). Лишь значительно позже того, как ребенок овладеет топологическими отношениями, он начинает развивать свои понятия эвклидовой и проективной геометрии. И тогда он строит их одновременно»1.
Опыт работы в экспериментальных садах показал, что дети 4-6 лет действительно быстро «схватывают» эти понятия и довольно легко ориентируются в решении подобных задач уже на первом году обучения, не считая их какими-то особо трудными. Наоборот, именно эти задания вызывают у них интерес, причем намного больший, чем работа с численными характеристиками множеств, что составляет основу для формирования понятия «число».
Третий принцип — преемственность математической подготовки ребенка-дошкольника требует в первую очередь формирования и развития математического мышления и подготовки к пониманию модельного характера математической науки, а не заучивания наизусть все большего количества математических фактов и ответов. Соблюдение принципа преемственности — это более всего вопрос преемственности методологии обучения математике и общего познавательного развития ребенка, что требует от педагога ДОУ понимания сушности и структуры познавательного развития ребенка, а также сущности современных развивающих методик обучения математике в начальной школе.
Приведем пример формирования программного содержания курса математического развития дошкольника в соответствии с обозначенными принципами отбора содержания.
Сформулируем основные задачи такого курса:
обучение ребенка доступным ему видам моделировани и формирование на этой основе начальных математически представлений (число, величина, геометрическая фигура и т. д.)
формирование и развитие общих приемов умственной дел тельности (классификация, сравнение, обобщение и т. д.);
формирование и развитие пространственного мышления
формирование конструктивных умений и развитие на это основе конструктивного мышления;
формирование простейших графических умений и на-выков;
подготовка к изучению математики в начальной школе
Моделирование в математическом образовании дошкольников.
В математическом образовании дошкольников можно эффективно использовать такую форму работы, как уроки моделирования, в основу которой положен метод моделирования. Уроки моделирования — это изготовление детьми (с помощью взрослых, под их руководством и самостоятельно) простых моделей игр, пособий для себя и для малышей, а также плоскостных и объемных моделей. В работе с детьми можно использовать замещение предметов: символы и знаки, плоскостные модели (планы, карты, чертежи, схемы, графики), объемные модели, макеты.
Начиная с выполнения заданий, требующих создания чертежа конструкции по замыслу, и до самого конца обучения на занятиях организовывалась совместно-распределенная деятельность детей. Один ребенок ("архитектор") выполнял чертеж по собственному замыслу, а другой по нему строил. При этом "архитектор" знал, что должен сделать его таким образом, чтобы другой ("строитель") мог в нем разобраться и правильно воспроизвести в материале. Третий ребенок ("контролер") проверял соответствие постройки чертежу и выявлял ошибки в чертеже или в процессе его реализации. Ошибки исправлялись совместно. Ролевые функции не закреплялись за каждым ребенком, а постоянно менялись.
Работа строится исходя из принципа дифференциации, взрослый работает с 2-3 детьми. Уроки моделирования заранее планируются и заносятся в перспективный план на каждого ребенка. Сначала с детьми проводится предварительная беседа, где должны решаться задачи мотивации и первичного ознакомления с предстоящей работой: оговаривается характер оригинала, модели, оборудование и материалы, название модели, задачи изготовления модели.
Деловое общение происходит как в процессе работы, так и при ее окончании — в процессе заключительной беседы, где оговариваются результаты работы, практический выход (успех и неудачи в работе), интересно ли было работать, достигли ли успеха в создании модели. Далее с готовыми моделями можно простраивать систему занятий.
В результате такой работы появляются математические игры, пособия, модели, которые можно использовать в игротеках (как в ДОУ, так и дома - игротека для родителей), при создании коллекций в ДОУ, на математических и познавательных занятиях.
1. При знакомстве с моделями необходимо указать, что это не просто схема или что-то еще, а приближенное описание оригиналов, как нечто такое,
что специально создано для решения поставленной задачи и что может быть заменено наиболее точным, удобным описанием;
2. Объяснить детям, что некоторые явления или процессы (например, время), которые мы не видим и не можем потрогать руками, можно изучить только с помощью их моделей;
3. Модели можно строить по-разному. Можно построить модель в виде учебной карты, схемы, таблицы... Это будут плоскостные модели. Модели могут быть и объемными;
4. Актуально детьми будет осознаваться лишь то содержание воспринимаемого, которое будет выступать как предмет, на который были направлены действия детей;
5. При работе с моделью должно быть совпадение двух типов действий: действия, вызываемые наглядным пособием, и действия, которые ребенок должен осуществлять для решения поставленной задачи. Только при совпадении. Этих действий пособие будет обладать развивающим характером.
6. С помощью моделей мы решаем и такую задачу, как упорядочение имеющегося у детей опыта, но упорядочить можно лишь тот опыт, который есть у детей, поэтому моделирование выполняется на знакомом детям материале, с опорой на знания, полученные ими ранее. Нельзя использовать пособия лишь для того, чтобы насытить уроки наглядностью;
7. Перед работой с моделью можно провести предварительную, вводную, ознакомительную беседу, чтобы познакомить детей с оригиналом, постепенно подвести к работе с моделью;
8. Перед тем как проводить занятия с моделью, можно рекомендовать провести 1-2 занятия без моделей.