Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера

Регрессионный анализ

x
y
y = f (x)
Под регрессионным анализом понимают исследование закономерностей связи между явлениями (процессами), которые зависят от многих, иногда неизвестных, факторов. Часто между переменными и существует связь, но не вполне определенная, при которой одному значению x соответствует несколько значений (совокупность) у. В таких случаях связь называют регрессионной. Таким образом,

функция является регрессионной (корреляционной), если каждому

значению аргумента соответствует статистический ряд распределения у.

x
y
Суть регрессионного анализа сводится к установлению уравнения регрессии, т.е. вида кривой между случайными величинами (аргументами и функцией ), оценке

x
y
тесноты связей между ними, достоверности и адекватности результатов измерений.

Чтобы предварительно определить наличие такой связи между и , наносят

x
y
точки на график и строят так называемое корреляционное поле (рис. 1). По виду корреляционного поля можно судить о наличии корреляционной связи. Так, из рис. 1-a видно, что экспериментальные данные имеют определенную связь между и , а

измерения на рис. 1-б такой связи не показывают.

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Рис. 1. Корреляционное поле

Различают однофакторные (парные) и многофакторные регрессионные зависимости. Парная регрессия при парной зависимости может быть аппроксимирована прямой линией, параболой, гиперболой, логарифмической, степенной или показательной функцией, полиномом и др. Двухфакторное поле можно аппроксимировать плоскостью, параболоидом второго порядка, гиперболоидом.

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

При построении теоретической регрессионной зависимости используется метод наименьших квадратов (МНК). Суть МНК заключается в следующем: из всего множества линий, которые можно провести через экспериментальные точки на корреляционном поле, линия регрессии y = b + b0x выбирается так, чтобы сумма квадратов расстояний по вертикали между экспериментальными точками и этой линией была наименьшей. Расстояния между экспериментальными точками и линией регрессии есть отклонения ei. Следовательно, при использовании МНК минимизируется следующая функция:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

b
где yi– фактические ординаты поля, yi– среднее значение ординаты. Необходимым условием существованием минимума двух переменных является

равенство её частных производных по неизвестным параметрам b0и 1.

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

Разрешая аналитически данную систему уравнений, получаем:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

где n– число измерений.

-1£ r £1

Коэффициент корреляции интерпретируется как мера линейной зависимости

случайных величин. При r > 0 между x и y существует положительная линейная

связь. При r < 0 между x и y существует отрицательная линейная связь. При r = 0

x
y
между x и y отсутствует линейная связь.

На рис. 2 представлены примеры меры линейной зависимости случайных величин и , линиями изображены прямые уравнения регрессии.

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

Проверка адекватности уравнения регрессии.

Надо убедиться, что полученное уравнение с достаточной степенью достоверности, адекватно описывает исследуемый процесс. Иными словами, необходимо убедиться, соразмерны ли степень воспроизводимости процесса со степенью адекватности уравнения процессу, т.е. сравнить среднюю дисперсию адекватности воспроизводимости среднего в каждой строчке результата с дисперсией адекватности.

Эта проверка осуществляется по F – критерию Фишера:

1.Рассчитывают выход Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru для каждого варианта опыта по уравнению регрессии, из которого исключены незначимые члены;

2.Находят разность Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru ;

3.Рассчитывают дисперсию адекватности

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru (3.27)

где Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru - число значимых коэффициентов в уравнении регрессии.

Эта разность Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru является числом степеней свободы, т.к. из N уравнений мы определили лишь Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru коэффициентов (а могли бы определить N коэффициентов).

1.Рассчитывают критерий Фишера по формуле:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru (3.28)

2.Сравнивают полученное значение критерия Фишера с его табличным значением FT (Приложение Б).

В таблицах критерий Фишера дан в зависимости от числа степеней свободы Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru при определении дисперсии адекватности и Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru при определении средней дисперсии воспроизводимости единичного измерения, S2(yk), равного числу степеней свободы при определении средней дисперсии воспроизводимости среднего Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru .

Критерий Фишера всегда больше единицы. Поэтому, в зависимости (3.28) в числитель поставлена дисперсия адекватности чисто условно. Если средняя дисперсия воспроизводимости Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru больше Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , то в числителе должна стоять Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru .

Промежуточные расчеты удобно представить в виде табл.3.7. Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

Дисперсия адекватности

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , т.к. N = 8, а Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru =7.

Так как Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , то критерий Фишера имеете величину

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

Таблица 3.7.Промежуточные расчёты по проверке адекватности

u Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru
69,5 0,5 0,25
59,5 0,5 0,25
55,7 0,7 0,49
90,9 0,9 0,81
104,5 0,5 0,25
94,5 0,5 0,25
80,7 0,7 0,49
100,7 0,7 0,49

при f1 = 16 и f2 = 1 табличное значение критерия Фишера по Приложению Б равно FT » 8,65.

Сравнение табличного значения критерия Фишера FT с рассчитанным F удовлетворяет неравенству F < FT. На этом основании делается вывод об адекватности полученного уравнения регрессии исследуемому процессу. Следовательно, это уравнение может служить основой для отыскания оптимальных условий ведения процесса

36. Теорема Букингема. Уменьшение размерности и снижение плотности плана эксперимента

Для правильного применения анализа размерностей по Шенку [8] исследователь должен знать характер и число фундаментальных переменных в его эксперименте. Фундаментальной переменной называют любую величину, оказывающую влияние на эксперимент и способную изменять независимо от других переменных. Фундаментальные переменные необходимо отличать от регулируемых переменных. Например, ускорение силы тяжести можно изменить независимо от других переменных, рассматриваемых при проведении эксперимента, отправив аппаратуру на Луну, однако мы представляем себе, что в обычных лабораторных экспериментах это сделать невозможно.

Если экспериментатору действительно известны все переменные, то он может сразу же преобразовать их, применив первую часть теоремы Букингема: «Если какое-либо уравнение однородно относительно размерностей, то его можно преобразовать к соотношению, содержащему набор безразмерных комбинаций величин».

Однородным относительно размерностей является уравнение, форма которого не зависит от выбора основных единиц. Примером является известное уравнение Фэннинга для коэффициента трения Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . Входящие в него величины могут выражаться в футах и секундах, метрах и часах или в любых других соразмерных единицах. И наоборот, уравнение Дюлонга и Пти Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru для теплового потока через единицу площади Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru от источника, имеющего температуру Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , не является однородным, так как, выражая Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru в градусах Кельвина, получим совсем другую формулу, чем при использовании Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru в градусах Ренкина. Правильная формула для этого случая была найдена позже. Она имеет вид Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , где Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru - некоторый размерный коэффициент. Действительно, сомнительно, чтобы какое-либо естественное явление можно было описать с помощью неоднородного уравне-ния. Такое описание может быть лишь приближенным.

Безразмерные комбинации, о которых упоминалось в теореме Букинге-ма, представляют собой произведения или отношения величин, составленные таким образом, что в каждой комбинации размерности сокращаются. В случае уравнения Фэннинга можно составить три безразмерные комбинации: Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru и Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . теорема Букингема не является столь тривиальной, как это может показаться при рассмотрении этого простого примера, и её до-казательство довольно сложно.

Выше отмечалось, что неоднородные уравнения не могут дать полного математического описания естественного явления или процесса. Можно не знать всех переменных, влияющих на эксперимент, но необходимо представ-лять себе, что эти переменные и связывающее их безразмерное уравнение существуют независимо от того, известны они или нет. Если не удается полу-чить систему безразмерных комбинаций, то это является верным признаком

того, что было что-то пропущено.

В случае уравнения Фэннинга для коэффициента трения в его наиболее общем виде обычно представляет интерес величина Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . Известно, что эта величина зависит от длины трубы Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , диаметра Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru и скорости потока Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . Все эти величины являются независимыми переменными. Хотя ускорение силы тяжести Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru практически величина постоянная, его также необходимо рассмат-ривать. Легко убедиться, что такие свойства жидкости, как плотность и вязкость, являются независимыми переменными (зависящими от вида жидкости и ее температуры). Изучение внутренних поверхностей различных труб показывает, что высота неровностей поверхности Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru также является переменной величиной. Итак, получаем восемь фундаментальных переменных и общее уравнение можно записать в следующем виде:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . (4.1.)

Согласно теореме Букингема, это функциональное соотношение (если оно однородно) можно выразить через безразмерные комбинации величин. Из опыта известно, что такое соотношение имеет следующий вид:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . (4.2)

Можно показать, что эти комбинации являются безразмерными, если используются совместимые единицы. Экспериментатору значительно легче найти функцию Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru в формуле (4.2), чем функцию Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru в формуле (4.1). Вместо того чтобы варьировать поочередно каждую из семи переменных, причем изменение некоторых из них может вызывать затруднения, исследователь может варьировать лишь каждую из трех комбинаций. Это обстоятельство существенно упрощает эксперимент и позволяет представить в графической форме и проанализировать полученные данные гораздо быстрее и с большей точностью.

Рассмотрим теперь простой способ нахождения комбинаций величин, входящих в формулу (4.2). используем так называемый релеевский метод решения размерных систем. Выразим сначала размерность переменных, описывающий систему с потерями на трение, по отношению к трем основным единицам: массы Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , времени Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru и длины Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . Перечень формул размерностей для основных величин приводится в табл.4.1.

Допустим теперь, что между этими величинами существует следующее соотношение:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru (4.3)

Подставим сюда вместо символов размерности из таблицы:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru (4.4)

Таблица 4.1.Формулы размерностей

Название переменной Обозначение Формула размерности
Потери тепла в трубе Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru
Длина трубы Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru
Диаметр трубы Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru
Скорость потока жидкости Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru
Вязкость жидкости Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru
Плотность жидкости Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru
Высота неровностей поверхности Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru
Ускорение силы тяжести Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

Чтобы данное уравнение было однородным относительно размерностей, должны выполняться следующие соотношения между показателями степени:

Для Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru ,

Для Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru ,

Для Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru

Имеем три уравнения с семью неизвестными. Упростим их, исключив Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru и Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . Тогда Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru , Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru и Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . Подставляя эти соот-ношения для показателей степени в формулу (4.3), поучаем:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru .

Объединяя члены с одинаковыми показателями степени, легко составить безразмерные комбинации:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . (4.5)

Восемь первоначальных переменных задачи дают пять безразмерных комбинаций. Применяя анализ размерностей, мы далеко продвинулись в реше-нии задачи. Теперь необходимо приступить к проверке фактической функции, в которую входят эти комбинации, и найти выражение, описывающее движение жидкости в трубе с потерями на трение. Эксперименты в области ламинарного потока дают следующую функцию:

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru .

Далее будут рассмотрены некоторые способы, позволяющие получить это соотношение с помощью экспериментальных данных. Окончательным

результатом является известное уравнение для потерь на трение при ламинарном потоке в трубе круглого сечения

Регрессионный анализ. Проверка адекватности эмпирической модели по критерию Фишера - student2.ru . (4.6)

В данном случае имеется всего три безразмерные комбинации (четыре в случае турбулентного потока), хотя к этому выводу невозможно прийти лишь с помощью анализа размерностей. Однако совершенно очевидно, что анализ размерностей позволяет упростить эксперимент.

Наши рекомендации