Сложные производные. Логарифмическая производная. Производная степенно-показательной функции

Продолжаем повышать свою технику дифференцирования. На данном уроке мы закрепим пройденный материал, рассмотрим более сложные производные, а также познакомимся с новыми приемами и хитростями нахождения производной, в частности, с логарифмической производной.

Тем читателям, у кого низкий уровень подготовки, следует обратиться к статье Как найти производную? Примеры решений, которая позволит поднять свои навыки практически с нуля. Далее необходимо внимательно изучить страницу Производная сложной функции, понять и прорешать все приведенные мной примеры. Данный урок логически третий по счету, и после его освоения Вы будете уверенно дифференцировать достаточно сложные функции. Нежелательно придерживаться позиции «Куда еще? Да и так хватит!», поскольку все примеры и приёмы решения взяты из реальных контрольных работ и часто встречаются на практике.

Начнем с повторения. На уроке Производная сложной функциимы рассмотрели ряд примеров с подробными комментариями. В ходе изучения дифференциального исчисления и других разделов математического анализа – дифференцировать придется очень часто, и не всегда бывает удобно (да и не всегда нужно) расписывать примеры очень подробно. Поэтому мы потренируемся в устном нахождении производных. Самым подходящими «кандидатами» для этого являются производные простейших из сложных функций, например:

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

По правилу дифференцирования сложной функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru :

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

При изучении других тем матана в будущем такая подробная запись чаще всего не требуется, предполагается, что студент умеет находить подобные производные на автомате. Представим, что в 3 часа ночи раздался телефонный звонок, и приятный голос спросил: «Чему равна производная тангенса двух икс?». На это должен последовать почти мгновенный и вежливый ответ:

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru .

Первый пример будет сразу предназначен для самостоятельного решения.

Пример 1

Найти следующие производные устно, в одно действие, например: Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru . Для выполнения задания нужно использовать только таблицу производных элементарных функций (если она еще не запомнилась). Если возникнут затруднения, рекомендую перечитать урок Производная сложной функции.

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru ,
Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru ,
Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru ,

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru ,

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru ,

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru ,

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Ответы в конце урока

Сложные производные

После предварительной артподготовки будут менее страшны примеры, с 3-4-5 вложениями функций. Возможно, следующие два примера покажутся некоторым сложными, но если их понять (кто-то и помучается), то почти всё остальное в дифференциальном исчислении будет казаться детской шуткой.

Пример 2

Найти производную функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Как уже отмечалось, при нахождении производной сложной функции, прежде всего, необходимо правильноРАЗОБРАТЬСЯ во вложениях. В тех случаях, когда есть сомнения, напоминаю полезный приём: берем подопытное значение «икс», например, Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru и пробуем (мысленно или на черновике) подставить данное значение в «страшное выражение».

1) Сначала нам нужно вычислить выражение Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , значит, сумма Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru – самое глубокое вложение.

2) Затем необходимо вычислить логарифм: Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

3) Далее косинус: Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

4) Потом косинус возвести в куб: Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

5) На пятом шагу разность: Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

6) И, наконец, самая внешняя функция – это квадратный корень: Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Формула дифференцирования сложной функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru применятся в обратном порядке, от самой внешней функции, до самой внутренней. Решаем:

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Вроде без ошибок….

(1) Берем производную от квадратного корня.

(2) Берем производную от разности, используя правило Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

(3) Производная тройки равна нулю. Во втором слагаемом берем производную от степени (куба).

(4) Берем производную от косинуса.

(5) Берем производную от логарифма.

(6) И, наконец, берем производную от самого глубокого вложения Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru .

Может показаться слишком трудно, но это еще не самый зверский пример. Возьмите, например, сборник Кузнецова и вы оцените всю прелесть и простоту разобранной производной. Я заметил, что похожую штуку любят давать на экзамене, чтобы проверить, понимает студент, как находить производную сложной функции, или не понимает.

Следующий пример для самостоятельного решения.

Пример 3

Найти производную функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Подсказка: Сначала применяем правила линейности и правило дифференцирования произведения

Полное решение и ответ в конце урока.

Настало время перейти к чему-нибудь более компактному и симпатичному.
Не редка ситуация, когда в примере дано произведение не двух, и трёх функций. Как найти производную от произведения трёх множителей?

Пример 4

Найти производную функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Сначала смотрим, а нельзя ли произведение трех функций превратить в произведение двух функций? Например, если бы у нас в произведении было два многочлена, то можно было бы раскрыть скобки. Но в рассматриваемом примере все функции разные: степень, экспонента и логарифм.

В таких случаях необходимо последовательноприменить правило дифференцирования произведения Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru два раза

Фокус состоит в том, что за «у» мы обозначим произведение двух функций: Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , а за «вэ» – логарифм: Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru . Почему так можно сделать? А разве Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru – это не произведение двух множителей и правило не работает?! Ничего сложного нет:

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Теперь осталось второй раз применить правило Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru к скобке Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru :

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Можно еще поизвращаться и вынести что-нибудь за скобки, но в данном случае ответ лучше оставить именно в таком виде – легче будет проверять.

Готово.

Рассмотренный пример можно решить вторым способом:
Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Оба способа решения абсолютно равноценны.

Пример 5

Найти производную функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Это пример для самостоятельного решения, в образце он решен первым способом.

Рассмотрим аналогичные примеры с дробями.

Пример 6

Найти производную функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Здесь можно пойти несколькими путями:

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru
или так:
Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Но решение запишется более компактно, если в первую очередь использовать правило дифференцирования частного Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , приняв за Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru весь числитель:

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

В принципе, пример решён, и если его оставить в таком виде, то это не будет ошибкой. Но при наличии времени всегда желательно проверить на черновике, а нельзя ли ответ упростить?

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Минус дополнительных упрощений состоит в том, что есть риск допустить ошибку уже не при нахождении производной, а при банальных школьных преобразованиях. С другой стороны, преподаватели нередко бракуют задание и просят «довести до ума» производную.

Более простой пример для самостоятельного решения:

Пример 7

Найти производную функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Продолжаем осваивать приёмы нахождения производной, и сейчас мы рассмотрим типовой случай, когда для дифференцирования предложен «страшный» логарифм

Пример 8

Найти производную функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Тут можно пойти длинным путём, используя правило дифференцирования сложной функции:

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Но первый же шаг сразу повергает в уныние – предстоит взять неприятную производную от дробной степени Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru , а потом ещё и от дроби Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru .

Поэтому перед тем как брать производную от «навороченного» логарифма, его предварительно упрощают, используя известные школьные свойства:

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru
Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru
Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

! Если под рукой есть тетрадь с практикой, перепишите эти формулы прямо туда. Если тетради нет, перерисуйте их на листочек, поскольку оставшиеся примеры урока буду вращаться вокруг этих формул.

Само решение можно оформить примерно так:

Преобразуем функцию:
Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Находим производную:
Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Предварительное преобразование самой функции значительно упростило решение. Таким образом, когда для дифференцирования предложен подобный логарифм, то его всегда целесообразно «развалить».

А сейчас пара несложных примеров для самостоятельного решения:

Пример 9

Найти производную функции Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Пример 10

Найти производную функции

Сложные производные. Логарифмическая производная. Производная степенно-показательной функции - student2.ru

Все преобразования и ответы в конце урока.

Наши рекомендации