Основные характеристики графов
ГрафG- это математический объект, состоящий из множества вершинX = {x1, x2,..., xn} и множества реберA = {a1, a2,..., an}. Таким образом, граф полностью определяется совокупностью множеств X, A: G= (X,A).
Для многих задач несущественно, являются ли ребра отрезками прямых или криволинейными дугами; важно лишь то, какие вершины соединяет каждое ребро.
Если ребрам графа приданы направления от одной вершины к другой, то такой граф называется ориентированным. Ребра ориентированного графа называются дугами. Соответствующие вершины ориентированного графа называют началоми концом. Если направления ребер не указываются, то граф называется неориентированным (или просто графом).
Пример 3.1.
На рис. 3.1 изображен неориентированный граф G =( X, A).
X= {x1, x2, x3, x4},
A = {a1= (x1, x2), a2=(x2, x3), a3=(x1, x3), a4= (x3, x4)}.
Рис. 3.1.
Пример 3.2.
На рис. 3.2. изображен ориентированный граф G = (X, A).
X = {x1, x2, x3, x4},
A= {a1= (x1,x2),a2= (x1,x3),a3= (x3,x4),a4= (x3,x2)}.
Рис. 3.2.
Граф, имеющий как ориентированные, так и неориентированные ребра, называется смешанным.
Различные ребра могут соединять одну и ту же пару вершин. Такие ребра называют кратными.Граф, содержащий кратные ребра, называется мультиграфом.
Неориентированное ребро графа эквивалентно двум противоположно направленным дугам, соединяющим те же самые вершины.
Ребро может соединять вершину саму с собой. Такое ребро называется петлей. Граф с кратными ребрами и петлями называетсяпсевдографом.
Множество ребер графа может быть пустым. Множество вершин графа не может быть пустым.
Пример 3.3.
На рис. 3.3. изображен ориентированный граф G = (X, A).
X = {x1, x2,x3, x4},
A= .
Риc. 3.3.
Как в случае ориентированного, так и в случае неориентированного ребра говорят, что вершины xи yинцидентныребру a, если эти вершины соединены a.
Две вершины называются смежными, если они инцидентны одному и тому же ребру. Два ребра называются смежными, если они имеют общую вершину.
Степеньювершины графа называется число ребер, инцидентных этой вершине. Вершина, имеющая степень 0, называется изолированной, а степень 1 – висячей.
Для ориентированного графа множество вершин, в которые ведут дуги, исходящие из вершины х, обозначают G(х), то есть G(х) = { y: ( x y ) G}. Множество G(x) называют образомвершины x. Соответственно G-1(у)– множество вершин, из которых исходят дуги, ведущие в вершину у, G-1(y)= {x: ( x , y ) G}. Множество G-1(у)называют прообразом вершины y.
Пример 3.4.
В графе, изображенном на рис. 3.1, концами ребра a1являются вершины x1, x2; вершина x2инцидентна ребрам a1, a2; степень вершины x3равна3; вершины x1и x3смежные; ребра a1и a2смежные; вершина x4висячая. В ориентированном графе, изображенном на рис. 3.2, началом дуги a1является вершина x1, а ее концом - вершина x2; вершина x1инцидентна дугам a1и a2; G(x1) = {x2, x3}, G(x2) =Æ, G-1(x3) = {x1}, G-1(x1) = Æ.
Подграфомнеориентированного графа G называется граф, все вершины и ребра которого содержатся среди вершин и ребер графа G. Аналогично определяется подграф ориентированного графа. Подграф называется собственным, если он отличен от самого графа,
Граф G = (X, A)- полный, если для любой пары вершин xi и xj существует ребро (xi, xj).
Граф G = (X, A)- симметрический, если для любой дуги (xi, xj) существует противоположно ориентированная дуга(xj, xi).
Граф G = (X, A) -планарный, если он может быть изображен на плоскости так, что не будет пересекающихся дуг.
Неориентированный граф G = (X, A)– двудольный, если множество его вершин X можно разбить на два такие подмножества X1и X2, что каждое ребро имеет один конец в X1, а другой в X2.