Второй признак равенства треугольников

Билет № 1

Первый признак равенства треугольников.

Первый признак равенства треугольника по двум сторонам и углу между ними формулируется в виде:

Теорема. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Доказательство.

Рассмотрим ΔABC и ΔA1B1C1, у которых AB=A1B1, AC=A1C1, Второй признак равенства треугольников - student2.ru А= Второй признак равенства треугольников - student2.ru А1. Докажем, что ΔABC=ΔA1B1C1. Так как Второй признак равенства треугольников - student2.ru A= Второй признак равенства треугольников - student2.ru A1 то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной A1 а стороны АВ и АС наложатся соответственно на лучи А1В1 и А1С1. Поскольку АВ=A1B1, AC=A1C1 то сторона АВ совместится со стороной A1B1 а сторона АС — со стороной A1C1 в частности, совместятся точки В и В1 С и С1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и A1B1C1 полностью совместятся, значит, они равны. Теорема доказана.

Второй признак равенства треугольников - student2.ru Запись на доске:

Дано: ΔABC, ΔA1B1C1, AB=A1B1, AC=A1C1, Второй признак равенства треугольников - student2.ru А= Второй признак равенства треугольников - student2.ru А1.

Доказать: ΔABC=ΔA1B1C1

Доказательство. Второй признак равенства треугольников - student2.ru A= Второй признак равенства треугольников - student2.ru A1 ═> ΔABC можно наложить на ΔА1В1С1 так, что А→A1 а АВ и АС наложатся на лучи А1В1 и А1С1.

АВ=A1B1, AC=A1C1 ═> АВ → A1B1 а АС → A1C1 В частности, В → В1 С → С1. Следовательно, ВС → В1С1. Итак, ΔABC → ΔA1B1C1 полностью, значит, ΔABC=ΔA1B1C1.

Параллелограмм. Определение, свойства, признаки.

Определение. Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны.

Второй признак равенства треугольников - student2.ru Четырехугольник ABCD имеет стороны AB║DC, а сторона BC║AD. Следовательно ABCD –параллелограмм. АС и ВD – диагонали параллелограмма.

Свойства:

1) В параллелограмме противоположные стороны равны и противоположные углы равны (AB=DC, BC=AD, ÐA=ÐC, ÐB=ÐD).

2) Диагонали параллелограмма точкой пересечения делятся пополам (BF=FD, AF=FC).

3) сумма углов, прилежащих к одной стороне равна 1800 (ÐA+ÐВ= ÐС+ÐD=ÐВ+ÐC=ÐА+ÐD=1800)

Признаки:

1) Если в четырёхугольнике две стороны равны и параллельны, то этот четырёхугольник – параллелограмм.

2) Если в четырёхугольнике противоположные стороны равны, то этот четырёхугольник – параллелограмм.

3) Если в четырёхугольнике диагонали пересекаются и точкой пересечения делятся пополам, то он параллелограмм.

Запись на доске:

Свойства:

1) AB=DC, BC=AD, ÐA=ÐC, ÐB=ÐD.

2) BF=FD, AF=FC.

3) ÐA+ÐВ= ÐС+ÐD=ÐВ+ÐC=ÐА+ÐD=1800)

Признаки:

1) Если ABСD - четырёхуг., и AB║DC и AB=DC, то – ABСD парал-м.

2) Если ABСD - четырёхуг., и AB=DC, BC=AD, то – ABСD парал-м.

3) Если ABСD - четырёхуг., и BF=FD, AF=FC, то – ABСD парал-м..

Задача.

Билет № 2

Второй признак равенства треугольников.

Второй признак равенства треугольника по стороне и двум прилежащим к ней углам формулируется в виде теоремы.

Теорема: Если сторона и два прилежащие к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника то такие треугольники равны.

Второй признак равенства треугольников - student2.ru Доказательство:РассмотримΔABC и ΔA1B1C1, у которых AB=A1B1, Второй признак равенства треугольников - student2.ru А= Второй признак равенства треугольников - student2.ru А1, ÐB=ÐB1. Докажем, что ΔABC=ΔA1B1C1. Наложим треугольник ABC на треугольник A1B1C1 так, чтобы вершина A совместилась с вершиной A1, сторона AB – со стороной A1B1, а вершины C и C1 оказались по одну сторону со стороны A1B1. Поскольку ÐA=ÐA1, ÐB=ÐB1, то сторона AC наложится на сторону A1C1, а сторона BC – на B1C1. Вершина C общая точка сторон AC и BC окажется как на стороне A1C1 так и на стороне B1C1, т.е. совместится с общей точкой этих сторон C1. Значит стороны AC и A1C1, BC и B1C1 совместятся, следовательно, и совместятся треугольники ABC и A1B1C1. Отсюда следует, что они равны: ∆ABC=∆A1B1C1

Запись на доске:

Дано: ΔABC, ΔA1B1C1, AB=A1B1, Второй признак равенства треугольников - student2.ru А= Второй признак равенства треугольников - student2.ru А1, ÐB=ÐB1.

Доказать: ΔABC=ΔA1B1C1

Доказательство:Наложим ΔABC на ΔA1B1C1 так, чтобы A → A1, AB → A1B1, а вершины C и C1 оказались по одну сторону со стороны A1B1.

ÐA=ÐA1, ÐB=ÐB1 ═>AC наложится на A1C1, а сторона BC – на B1C1.

C Второй признак равенства треугольников - student2.ru AC, C Второй признак равенства треугольников - student2.ru BC ═> C Второй признак равенства треугольников - student2.ru A1C1, C Второй признак равенства треугольников - student2.ru B1C1, ═> С→C1.

Значит стороны AC → A1C1, BC → B1C1, ═> ΔABC → ΔA1B1C1.

Значит, ∆ABC=∆A1B1C1

Наши рекомендации