Теорема о дифференцировании суммы, произведении, частного (доказать для суммы)
Производная алгебраической суммы функций
выражается следующей теоремой.
Теорема 1. Производная суммы (разности) двух дифференцируемых функций равна сумме (разности) производных этих функций:
(u±v)' = u'±v'
Следствие. Производная конечной алгебраической суммы дифференцируемых функций равна такой же алгебраической сумме производных слагаемых. Например,
(u — v + w)' = u' — v' + w'
Производную произведения функций определяет
Теорема 2. Производная произведения двух дифференцируемых функций равна произведению первой функции на производную второй плюс произведение второй функции на производную первой, т. е.
(uv)' = u'v + uv'
Следствие 1. Постоянный множитель можно выносить за знак производной (cv)' = cv' (с = const).
Следствие 2. Производная произведения нескольких дифференцируемых функций равна сумме произведений производной каждой из них на все остальные.
Например, (uvw)' = u'vw + uv'w + uvw'
Производная частного двух функций
выражается следующей теоремой.
Теорема 3. Производная частного двух дифференцируемых функций определяется формулой
Сформулировать теорему о дифференцировании обратной функции
Для дифференцируемой функции с производной, отличной от нуля, производная обратной функции равна обратной величине производной данной функции, т.е
Доказательство
Пусть - дифференцируемая функция, .
Пусть - приращение независимой переменной y и - соответствующее приращение обратной функции .
Напишем тождество
Переходя в этом равенстве к пределу при , которое влечет за собой стремление к нулю ( ), получим:
, где - производная обратной функции.
5. Сформулировать теорему о дифференцировании сложной функции.
Пусть функция z = f(x, y) дифференцируема в точке (x0, y0) и ее аргументы x = x(t) и y = y(t) дифференцируемы в точке t0 , причем x(t0) = x0 , y(t0) = y0 .
Тогда сложная функция z = f(x(t), y(t)) переменной t дифференцируема в точке t0 и ее производная вычисляется по формуле
6. Дифференцирование основных элементарных функций.
Логарифмическое дифференцирование
Логарифмическим дифференцированием называется метод дифференцирования функций, при котором сначала находится логарифм функции, а затем вычисляется производная от него. Такой прием позволяет эффективно вычислять производные степенных и рациональных функций.
Рассмотрим этот подход более детально. Пусть дана функция y = f(x). Возьмем натуральные логарифмы от обеих частей:
Теперь продифференцируем это выражение как сложную функцию, имея ввиду, что y - это функция от x.
Отсюда видно, что искомая производная равна