Элементарные преобразования систем
К элементарным преобразованиям относятся:
1)Прибавление к обеим частям одного уравнения соответствующих частей другого, умноженных на одно и то же число, не равное нулю.
2)Перестановка уравнений местами.
3)Удаление из системы уравнений, являющихся тождествами для всех х.
ТЕОРЕМА КРОНЕКЕРА – КАПЕЛЛИ
(условие совместности системы)
(Леопольд Кронекер (1823-1891) немецкий математик)
Теорема:Система совместна (имеет хотя бы одно решение) тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы.
RgA = RgA*.
Очевидно, что система (1) может быть записана в виде:
x1 + x2 + … + xn
Доказательство.
1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход А®А* не изменяют ранга.
2) Если RgA = RgA*, то это означает, что они имеют один и тот же базисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.
Пример. Определить совместность системы линейных уравнений:
A =
~ . RgA = 2.
A* = RgA* = 3.
Система несовместна.
Пример. Определить совместность системы линейных уравнений.
А = ; = 2 + 12 = 14 ¹ 0; RgA = 2;
A* =
RgA* = 2.
Система совместна. Решения: x1 = 1; x2 =1/2.
2.6 МЕТОД ГАУССА
(Карл Фридрих Гаусс (1777-1855) немецкий математик)
В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.
Рассмотрим систему линейных уравнений:
Разделим обе части 1–го уравнения на a11 ¹ 0, затем:
1) умножим на а21 и вычтем из второго уравнения
2) умножим на а31 и вычтем из третьего уравнения
и т.д.
Получим:
, где d1j = a1j/a11, j = 2, 3, …, n+1.
dij = aij – ai1d1j i = 2, 3, … , n; j = 2, 3, … , n+1.
Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.
Пример. Решить систему линейных уравнений методом Гаусса.
Составим расширенную матрицу системы.
А* =
Таким образом, исходная система может быть представлена в виде:
, откуда получаем: x3 = 2; x2 = 5; x1 = 1.
Пример. Решить систему методом Гаусса.
Составим расширенную матрицу системы.
Таким образом, исходная система может быть представлена в виде:
, откуда получаем: z = 3; y = 2; x = 1.
Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера и матричным методом.
Для самостоятельного решения:
Ответ: {1, 2, 3, 4}.
ТЕМА 3. ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ
ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ
Определение. Вектором называется направленный отрезок (упорядоченная пара точек). К векторам относится также и нулевой вектор, начало и конец которого совпадают.
Определение. Длиной (модулем) вектора называется расстояние между началом и концом вектора.
Определение. Векторы называются коллинеарными, если они расположены на одной или параллельных прямых. Нулевой вектор коллинеарен любому вектору.
Определение. Векторы называются компланарными, если существует плоскость, которой они параллельны.
Коллинеарные векторы всегда компланарны, но не все компланарные векторы коллинеарны.
Определение. Векторы называются равными, если они коллинеарны, одинаково направлены и имеют одинаковые модули.
Всякие векторы можно привести к общему началу, т.е. построить векторы, соответственно равные данным и имеющие общее начало. Из определения равенства векторов следует, что любой вектор имеет бесконечно много векторов, равных ему.
Определение. Линейными операциями над векторами называется сложение и умножение на число.
Суммой векторов является вектор -
Произведение - , при этом коллинеарен .
Вектор сонаправлен с вектором ( ), если a > 0.
Вектор противоположно направлен с вектором ( ¯ ), если a < 0.
СВОЙСТВА ВЕКТОРОВ
1) + = + - коммутативность.
2) + ( + ) = ( + )+
3) + =
4) +(-1) =
5) (a×b) = a(b ) – ассоциативность
6) (a+b) = a + b - дистрибутивность
7) a( + ) = a + a
8) 1× =
Определение.
1) Базисом в пространстве называются любые 3 некомпланарных вектора, взятые в определенном порядке.
2) Базисом на плоскости называются любые 2 неколлинеарные векторы, взятые в определенном порядке.
3)Базисом на прямой называется любой ненулевой вектор.
Определение. Если - базис в пространстве и , то числа a, b и g - называются компонентами или координатами вектора в этом базисе.
В связи с этим можно записать следующие свойства:
- равные векторы имеют одинаковые координаты,
- при умножении вектора на число его компоненты тоже умножаются на это число,
= .
- при сложении векторов складываются их соответствующие компоненты.
; ;
+ = .