Основные свойства определителей 3-го порядка

МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ

Определители 2-го порядка

1. Определения. В ряде вопросов математики используются некоторые специальные выражения, называемые определителями (или детерминантами). Простейшие из них – это так называемые «определители 2-го порядка». Покажем, как эти определители возни­кают при решении системы двух линейных уравнений с двумя неиз­вестными.

Рассмотрим систему

а1x + b1y = c1,

а2x + b2y = c2.

Чтобы исключить неизвестное у, умножим второе уравнение на b1 и вычтем то, что получится, из первого уравнения, умноженного на b2. В результате окажется

1 b2 – а2 b1) х = c1 b2 – c2 b1.

Коэффициент при х записывается в виде Основные свойства определителей 3-го порядка - student2.ru и называется определителем 2-го порядка. Таким образом, опреде­литель 2-го порядка есть некоторое число, определяемое как числами а1, а2, b1, b2, так и их взаимным расположением. Это расположение задается квадратной таблицей Основные свойства определителей 3-го порядка - student2.ru .

Чтобы подчеркнуть, что эта таблица рассматривается как нечто целое, ее окаймляют круглыми скобками или двумя парами вертикальных чёрточек: Основные свойства определителей 3-го порядка - student2.ru или Основные свойства определителей 3-го порядка - student2.ru .

Такие таблицы называют матрицами 2-го порядка. Про определитель говорят, что он порождён матрицей. Необходимо чётко понимать разницу между определителем Основные свойства определителей 3-го порядка - student2.ru и матрицей Основные свойства определителей 3-го порядка - student2.ru . Первый есть число, а вторая – просто таблица, составленная из четырёх чисел.

Итак, определителем матрицы называется число, находимое по формуле:

Det Основные свойства определителей 3-го порядка - student2.ru = а1 b2 – а2 b1.

Числа а1, а2, b1, b2 называют элементами определителя и порождающей его матрицы. Различают также первый столбец Основные свойства определителей 3-го порядка - student2.ru и второй столбец Основные свойства определителей 3-го порядка - student2.ru , первую строку Основные свойства определителей 3-го порядка - student2.ru и вторую строку Основные свойства определителей 3-го порядка - student2.ru . Строки и столбцы определителя называют рядами. Пара чисел а1, b2 образуют главную диагональ (+) определителя, пара чисел а2, b1 – вторую диагональ (–).

Примеры.

Основные свойства определителей 3-го порядка - student2.ru = 35 – 12 = 23; Основные свойства определителей 3-го порядка - student2.ru = 24 + 2 = 26; Основные свойства определителей 3-го порядка - student2.ru = 0; Основные свойства определителей 3-го порядка - student2.ru = 1.

Основные свойства определителей 2-го порядка.

I. Определитель не изменится, если его строки превратить в столбцы, а столбцы в строки (равноправность строк и столбцов):

Основные свойства определителей 3-го порядка - student2.ru = Основные свойства определителей 3-го порядка - student2.ru .

II. При перестановке строк (столбцов) определитель меняет знак:

Основные свойства определителей 3-го порядка - student2.ru = – Основные свойства определителей 3-го порядка - student2.ru .

III. Если строки (столбцы) определителя одинаковы, то определитель равен нулю: Основные свойства определителей 3-го порядка - student2.ru =0.

IV. Если все элементы одной из строк определителя умножить на некоторое число, то весь определитель умножится на это число, т.е. общий множитель элементов одной строки можно вынести за знак определителя:

Основные свойства определителей 3-го порядка - student2.ru =q Основные свойства определителей 3-го порядка - student2.ru .

V. Если элементы одной строки пропорциональны элементам другой, то определитель равен нулю:

Основные свойства определителей 3-го порядка - student2.ru =0.

VI. Если к одной из строк прибавить другую, умноженную на любое число, то определитель не изменится:

Основные свойства определителей 3-го порядка - student2.ru = Основные свойства определителей 3-го порядка - student2.ru .

Определители 3-го порядка

1. Определение.Определителем третьего порядка называется число:

Основные свойства определителей 3-го порядка - student2.ru = a1 b2 c3 + a2 b3 c1 + a3 b1 c2 – a3 b2 c1 – a2 b1 c3 – a1 b3 c2 .

Примеры.

Основные свойства определителей 3-го порядка - student2.ru = 72 + 280 +18 – 168 – 135 – 16 = 51.

Основные свойства определителей 3-го порядка - student2.ru = -9 + 28 – 20 – 10 – 24 – 21 = – 56.

Основные свойства определителей 3-го порядка.

Те же свойства, что и у определителей 2-го порядка.

Наши рекомендации