Вопрос 25 Числовые ряды. Критерий Коши сходимости числового ряда. Следствие: необходимое условие сходимости ряда.
Выражение(1)
где (uk)kÎN — заданная числовая последовательность, называется числовым рядом. Конечные суммы S1 = u1, S2 = u1 + u2, .... Sn = u1 + u2 +...+ un, называются частичными суммами ряда (1).
Если существует конечный предел последовательности частичных сумм (2)
то ряд (1) называется сходящимся, а число S—суммой ряда (1)
Необходимое условие сходимости. Если ряд (1) сходится, то
Доказательство.
Пусть ряд u1+u2+…+un… сходится, то есть существует конечный предел =S. Тогда имеет место также равенство =S, так как при n и (n-1) . Вычитая почленно из первого равенства второе, получаем - = = un=0, что и требовалось доказать.
Критерий Коши. Для того чтобы числовой ряд (1) был сходящимся, необходимо и достаточно, чтобы для любого ε > 0 существовало N = N(ε) такое, что для всех n > N и р = 1, 2, … выполнялось неравенство
Доказательство:
Вопрос 26 Ряды с неотрицательными членами. Необходимое и достаточное условие сходимости. Признак сравнения.
Положительный ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена сверху.
Необходимое условие
Так как ряд сходится, то последовательность частичных сумм имеет предел. Следовательно она ограничена. А значит она ограничена и снизу и сверху. Доказано
Достаточное условие
Дан положительный ряд и последовательность частичных сумм ограничена сверху. Покажем, что наша последовательность(из членов ряда) неубывающая: S(n + 1) − S(n) = a(n + 1) Теперь используем свойство из теоремы о монотонной последовательности и получим, что последовательность частичных сумм ограничена сверху.
Признак сравнения. Пусть даны два ряда с положительными членами
(17)
и
(18)
и каждый член ряда (17) не превосходит соответствующего члена ряда (18), т.е. выполняется (n = 1, 2, 3, …). Тогда, если сходится ряд (18), то сходится и ряд (17). Если ряд (17) расходится, то ряд (18) также расходится. Этот признак остается в силе, если условие выполняется не для всех n, а лишь начиная с некоторого номера n = N.
Вопрос 27 Признаки Даламбера и Коши сходимости рядов с неотрицательными членами.
Признак Даламбера
Пусть дан знакоположительный числовой ряд
(7)
и пусть существует предел При p<1 ряд (7) сходится, при p>1 ряд (7) расходится.
Доказательство. По условию существует предел . Это означает, что для любого положительного числа Е существует такой номер N, что для всех номеров n³N выполняется условие или
p-E< (10)
Пусть сначала p<1. Выберем Е так, что p+E=q<1. Для всех n³N имеем … или
или
(11)
Рассмотрим ряды
(12)
. (13)
Ряд (13) сходится, так как он является бесконечно убывающей геометрической прогрессией. Тогда ряд (12) сходится, учитывая (11), по признаку сравнения. Ряд (7) сходится по теореме 1.
Пусть теперь p>1. Выберем Е так, что p-E>1. Тогда из левой части неравенства (10) следует, что при n³N выполняется или un+1>un, то есть члены ряда возрастают с возрастанием номера n. Поэтому un¹0, следовательно, ряд расходится по следствию из необходимого признака сходимости. Теорема доказана.
Замечания.
1. Если расходимость ряда установлена с помощью признака Даламбера, то un¹0.
2. При р=1 признак Даламбера не даёт ответа о сходимости ряда. В этом случае нужно применять другие признаки сходимости.
3. Признак Даламбера рекомендуется применять при наличии в выражении общего члена ряда показательной функции или факториала.
Признак Коши
Пусть дан знакоположительный числовой ряд u1+u2+…+un… (7)
и пусть существует предел При p<1 ряд (7) сходится, при p>1 ряд (7) расходится.
Доказательство. По условию существует Это означает, что для любого положительного числа Е существует такой номер N, что для всех n³N выполняется условие | | <E или
p-E< <p+E. (14)
Пусть p<1. Выберем Е таким, чтобы выполнялось p+E=q<1. Тогда из (14) получаем <q или un<qn для всех n³N. Рассмотрим ряды
(15)
(16)
Ряд (16) сходится, так как он является бесконечно убывающей геометрической прогрессией. Ряд (15) сходится, учитывая, что un<qn для всех n³N, по признаку сравнения, следовательно, по теореме 1 сходится ряд (7).
Пусть теперь p>1. Выберем Е так, чтобы выполнялось условие
p-E >1. Тогда из (14) получаем >1 или un>1, следовательно, un¹0 и ряд (7) расходится по следствию из необходимого признака сходимости. Теорема доказана.