Скалярное, векторное, смешанное произведение векторов

Определение.Скалярным произведением двух векторов называется число, равное произведению длин векторов на косинус угла:

Вычисляется как сумма произведений соответствующих координат этих векторов (a,b) = x1x2 + y1y2 + z1z2.

Определение.Векторное произведение двух векторов – это вектор,перпендикулярный векторам aи b,образующий с ними правую тройку и имеющий длину

Вычисляется как определитель .

Геометрически длина векторного произведения равна площади параллелограмма, построенного на этих векторах.

Определение.Смешанное произведение трех векторов это число,равное скалярному произведению третьего вектора на векторное произведение первых двух (a, b, c) = (a×b, c).

Вычисляется как определитель

Геометрически модуль смешанного произведения векторов равен объёму параллелепипеда, построенного на этих векторах.

Если смешанное произведение равно нулю, то вектора лежат в одной плоскости, т. е. компланарны.

1.25. В таблице 1.14 заданы векторы , Вычислить:

1) ; 2) ; 3) ; 4) ;

5) угол между векторами и .

Таблица 1.14

(4, –2, –4) (1, 4, –2) (1, 1, 1) (0, 1, 1)
(5, –1, 3) (3, 1, 1) (1, –1, 0, ) ( –1, 1, 0)

1.26. Найти и построить вектор = , если:

1) = 2 , = 3 ; 2) = , = ;

3) = = .

Определить в каждом случае площадь параллелограмма, построенного на векторах и .

1.27. Найти × , синус угла между векторами и , если:

1) = (1, –5, – 3), = (–2, 4, 3);

2) = (3, –2, 6), = (6, 3, –2);

3) = (3, 0, –4), = (1, –2, 2).

1.28. Найти площадь треугольника с вершинами:

1) А (2; 2; 2), В (1; 3; 3), С (3; 4; 2);

2) А (–3; –2; –4), В (–1; –4; –7), С (1; –2; 2).

1.29. Найти смешанное произведение , и , если:

1) = (1, 1, 2), = (1, –2, 3), = (2, 1, 1);

2) = (5, –2, –1), = (1, –2, 1), = (1, 2, –2).

1.30. Установить, компланарны ли векторы:

1) = (1, 1, 3), = (0, 2, –1), = (1, –1, 4);

2) = (1, 2, 2), = (2, 5, 7), = (1, 1, –1).

1.31. Вычислить объем параллелепипеда, построенного на векторах
= (3, 2, 1), = (1, 0,–1), = (1, –2, 1).

1.32. Треугольная пирамида задана координатами своих вершин
1) А (–1; 1; 0), В (2;–2; 1), С (3; 1; –1), Д (1; 0; –2).

2) А (–4; –4; –3), В (–2;–1; 1), С (2; –2; –1), D (1; 3; –2).

Найти: угол <ДАВ; S – площадь грани АВС, V – объём пирамиды, высоту пирамиды.

Решение.

1) Найдём векторы и :

= (1 + 1; 0 – 1; – 2– 0) = (2; –1; –2), = (2 + 1; –2–1; 1 –0) = (3; –3; 1),

,

.

2) Найдем вектор = (4; 0; –1), тогда векторное произведение

Его длина равна площади параллелограмма, построенного на этих векторах. Вычислим: .

Тогда площадь ∆АВС равна половине площади параллелограмма:

3) Найдём смешанное произведение:

= 0 + 4+ 6 – (0+24+3)= –17.

, ,

Значит,

4) Т.к. , то можно найти высоту пирамиды

1.2.3. Линейные операторы.
Собственные векторы и собственные значения

Любую квадратную матрицу можно рассматривать как линейный оператор, действующий на векторах. Матрица линейного оператора строится следующим образом: фиксируем базис линейного пространства (е1, е2) и действуем на базисные вектора данным преобразованием φ. Например, рассмотрим поворот на 60 (рис. 1.2); при этом базисные вектора переходят в вектора е1', e2'. Раскладываем эти образы по прежнему базису, коэффициенты разложения образуют столбцы матрицы линейного оператора преобразования.

e1= i =

e2 = j =

A = .

Рис. 1.2. Линейное преобразование поворота на 60˚

Определение. Вектор х называется собственным для матрицы А, если Ах = λх или (А – λЕ) х =0. Собственные числа λ являются корнями характеристического уравнения det (A – λE) = 0.

1.33. Линейный оператор в базисе задан матрицей А. Найти образ где:

1) = 4 –3 , А = ; 2) = 2 + 4 – ,

А =

1.34. Проверить непосредственным вычислением, какие из данных ниже векторов являются собственными векторами матрицы А, и указать соответствующие собственные значения:

,

1.35. Найти собственные значения и собственные векторы линейных операторов, заданных матрицами:

1) А = 2) А =

3) А = 4) А =

Задача о нахождении соотношения сбалансированности торговли

Постановка задачи. Пусть имеется несколько стран с известными национальными доходами Х = (х1, х2, …, хn). Структурная матрица торговли А показывает долю национального дохода, которую страна тратит на покупку товаров других стран и внутри своей страны. Требуется найти соотношение национальных доходов для сбалансированности торговли.

Математически эта задача сводится к отысканию собственного вектора матрицы А, отвечающего собственному значению 1.

Пример 1.10. Задана структурная матрица торговли . Найти соотношение национальных доходов стран для сбалансированной торговли.

Решение:

= .

= = (0,5 –)٠(0,6 –) –2 = 0,3 – 0,5– 0,6 + 2 – 0,2 = 2 – 1,1 +0,1 = 0.

Находим корни уравнения – собственные значения матрицы. Действительно, = 1, = 0,1. Тогда, собственный вектор для= 1:
(А – 1Е)٠Х= • = .

Имеем систему . Собственный вектор Х = (0,8; 1).

Соотношение доходов получается 0,8 : 1 или 4 : 5.

1.36. Структурная матрица торговли трех стран имеет вид:

А = .

Найти бюджет первой и второй стран, удовлетворяющие сбалансированной бездефицитной торговле при условии, что бюджет третьей страны равен 1100 усл. ед.

1.37. Структурная матрица торговли четырех стран имеет вид:

A= .

Найти бюджеты этих стран, удовлетворяющие сбалансированной бездефицитной торговле, если сумма бюджетов = 6270 усл. ед.

Контрольные задания

Вариант 1.

1. Найти разложение вектора a=(7;4;3) по базису e1=(1;2;0),
e2 =(3; –1; 2), e3 = (0; 4;–1).

2. Известно, что неколлинеарные векторы x(а;1) и у(в;1) являются собственными векторами матрицы . Найти координаты а и в.

3. Определить длины векторов, на которых построен параллелограмм с диагоналями с = 2i – j + 3k и d = 2i –2j + 4k.

4. Найти площадь треугольника с вершинами: А (2; 1; 4), В (1; 0; 3), С (3; 1; 2).

Вариант 2.

1. Найти значение параметра а, при котором вектор (1,а) является собственным для матрицы .

2. Найти длину вектора с = 2a – 3b,если |a| = 3, |b| = 2, угол между ними 60.

3. Образуют ли векторы базис e1 = (–2, 2, 4), e2 = (0, 1, 0), e3 = (2, –3, −4)?

4. При каком значении m вектора a = mi –3j + 2k и b = i + 2j – mk перпендикулярны?

Аналитическая геометрия

В этом параграфе рассматриваются различные виды уравнений, задающие прямую на плоскости и пространстве, уравнение плоскости, взаимное расположение прямой и плоскости, уравнение кривых второго порядка.

Прямая на плоскости

1.38. Составить уравнение прямой, проходящей через точку А, параллельно: 1) оси ОУ, А(2; –3); 2) оси ОХ, А(1; 2); 3) прямой 2x – 3y + 1 = 0, А(2; –3); 4) прямой x + y – 2 = 0, А(1; 2).

1.39. Составить уравнение прямой, проходящей через точку А, перпендикулярно прямой: 1) 3х – 2у + 5 = 0, А (2; –1); 2) 2х + у – 7 = 0, А(0; 3).

Задача про треугольник

Треугольник задан координатами своих вершин А(–2; 0), В(2; 4), С(4; 0). Найти: 1) уравнение стороны; 2) уравнение медианы, проведенной из вершины А; 3) уравнение высоты, проведенной из вершины А; 4) уравнение прямой, проходящей через А параллельно ВС.

1) Найдем уравнение стороны ВС по формуле уравнения прямой, проходящей через две заданные точки:

(1.1)

В(2; 4), С(4; 0), следовательно,

2у – 8 = –4х + 8,

2у = –4х + 16,

у = –2х + 8.

Рис. 1.3. Треугольник на плоскости

2) Найдем уравнение медианы АЕ из точки А:

Пусть Е – середина отрезка ВС. Координаты середины отрезка найдем по формулам:

Хсер = , Усер =

ХЕ = , УЕ = .

Точка Е имеет координаты Е(3; 2). Найдем уравнение прямой (АЕ) по (1.1):

–2х + 6 = – 5у + 10, 5y = 2x+4, у = 0,4 х + 0,8 –уравнение медианы.

3) Найдем уравнение высоты АD.

Т. к. прямая AD перпендикулярна прямой ВС, то из условия перпендикулярности прямых через угловые коэффициенты имеем:

kАD= = =

Уравнение прямой, проходящей через данную точку с известным угловым коэффициентом, имеет вид:

у – у0 = k (х – х0) (1.2)

Используя точку А(–2; 0) и k = 1/2, имеем у – 0 = 0,5(х – (–2)) или

у = 0,5х + 1 –уравнение высоты.

4) Найдем уравнение прямой, проходящей через точку А и параллельной прямой ВС.

Т. к. прямая l // BC, то их угловые коэффициенты равны kι = kВС.

kι = –2. Тогда по уравнению (1.2), зная точку А(–2; 0) и k = –2, найдем

у – 0 = – 2 (х + 2) или у = –2х – 4 –уравнение параллельной прямой.

Все уравнения полученных прямых проверьте по чертежу! Свободный член в уравнении прямой показывает её пересечение с осью ОУ.

1.40. Для треугольников, заданных координатами своих вершин найти 1) уравнение сторон; 2) уравнение медиан; 3) уравнение высот 4) уравнение прямой, проходящей через вершину, параллельно противоположной стороне, 5) угол А треугольника.

1) А(1; 1), В(2; 5), С(6; 2); 2) А(–1;–1), В(2; 5), С(4; –2);

3) А(–3; 1), В(2; 4), С(3; –1); 4) А(1;–2), В(6; 2), С(–1; 6);

5) А(–2; 3), В(4; 5), С(4; –2); 6) А(1;–3), В(3; 4), С(7; –2);

7) А(1; 3), В(8; 5), С(3; –2); 8) А(–4;–2), В(1; 5), С(3; –2);

9) А(–5; –1), В(–4; 6), С(1; 0); 10) А(1; 1), В(2; 2), С(3; –4).

1.41. А – вершина прямоугольника, противоположный угол образован осями координат. Составить уравнения сторон и диагоналей этого прямоугольника, если: 1) А (–4; 3); 2) А (2; 3).

1.42. Составить уравнение прямой, отсекающей на осях координат OX и OY отрезки: 1) а = 2 и b = –5; 2) а = –1 и b = 4.

1.43. Найти уравнение прямой, проходящей через точку А (4; 3) и отсекающей от координатного угла треугольник площадью 3 кв. ед.

1.44. Составить уравнение прямой, проходящей через точку пересечения прямых 5х – у +10 = 0 и 8х + 4у + 9 = 0 параллельно прямой х + 3у = 0.

1.45. Составить уравнение прямой, проходящей через точку пересечения прямых 2х – 3у + 5 = 0 и 3х + у – 7 = 0, перпендикулярно к прямой у = 2х.

1.46. Даны вершины параллелограмма: точки А(3; –5), В(–1, 3). Определить четвертую вершину D, противоположную В.

1.47. Известны уравнения двух смежных сторон параллелограмма
х + у + 5 = 0 и х – 4у = 0. Составить уравнения двух других сторон, если известна точка пересечения его диагоналей Р(2; –2).

1.48. Известны середины сторон треугольника АВС, это точки Р(1; 2),
Q(5;–1) и R(–4; 3). Составить уравнение его сторон.

1.49. Известны одна из вершин А(–2; 1) и уравнения двух сторон прямоугольника 3 х – 4у + 5 = 0и 4х + 3у – 7 = 0. Составить уравнения двух других сторон.

Наши рекомендации