Модуль 7. Теорія ймовірностей.

Контрольна робота № 6 виконується учнями після вивчення наступних розділів програми:

· Основні означення, поняття і теореми теорія ймовірностей випадкових подій.

· Класична ймовірність.

· Основні теореми теорії ймовірностей.

· Формула повної ймовірності, формула Байєса.

Завдання . Розв’язати задачу.

1. З 15 надрукованих книг три виявилися з браком. Яка ймовірність того, що дві вибрані навмання книжки будуть без браку ?

Розв’язування.

► Нехай подія А полягає в тому, що дві вибрані навмання книги будуть без браку. З 15 книг вибрати дві можна Модуль 7. Теорія ймовірностей. - student2.ru способами ( число комбінацій із 15 по 2 ). Усі ці події є рівноможливими і попарно несумісними. Отже, загальна кількість рівноможливих результатів дорівнює Модуль 7. Теорія ймовірностей. - student2.ru . Сприятливою подією для події А є вибір двох небракованих книг із 12 небракованих ( 15 – 3=12 ). Отже, число сприятливих результатів (подій) для події А дорівнює Модуль 7. Теорія ймовірностей. - student2.ru . Звідси, за формулою класичної ймовірності, одержуємо:

Модуль 7. Теорія ймовірностей. - student2.ru . ◄

2. Група туристів, у якій шість юнаків і чотири дівчини, вибирає жеребкуванням чотирьох чергових. Яка ймовірність того, що буде вибрано два юнака і дві дівчини ?

Розв’язування.

► Число результатів (елементарних подій) під час вибирання чотирьох

чергових із 10 туристів дорівнює Модуль 7. Теорія ймовірностей. - student2.ru . Усі ці події є рівноможливі і попарно несумісні.

Нехай подія А полягає в тому, що серед чотирьох чергових є два юнаки і дві дівчини. Вибрати двох юнаків із шести можна Модуль 7. Теорія ймовірностей. - student2.ru способами, а вибрати двох дівчат із чотирьох можна Модуль 7. Теорія ймовірностей. - student2.ru способами. За правилом добутку вибір і двох юнаків, і двох дівчат можна виконати Модуль 7. Теорія ймовірностей. - student2.ru способами – це і кількість подій для події А. Тоді, за формулою класичної ймовірності. Маємо

Модуль 7. Теорія ймовірностей. - student2.ru . ◄

3. Два баскетболісти кидають незалежно один від одного м’яч в корзину. Імовірність попадання для першого спортсмена дорівнює 0,75, а для другого – 0,8. Визначити імовірність попадання м’яча в корзину.

Розв’язування.

► Нехай А – попадання в корзину першого баскетболіста, В – попадання другого, С – попадання в корзину.

Подію С можна подати у вигляді суми трьох відповідних подій:

Модуль 7. Теорія ймовірностей. - student2.ru , де Модуль 7. Теорія ймовірностей. - student2.ru – подія, яка полягає в тому, що перший баскетболіст попаде в корзину, а другий ні, Модуль 7. Теорія ймовірностей. - student2.ru – подія, яка полягає в тому, що другий баскетболіст попаде в корзину, а перший ні, Модуль 7. Теорія ймовірностей. - student2.ru – обидва попали в корзину.

Кожен із доданків суми є добутком двох незалежних подій, а тому для обчислення їх імовірності можна застосувати теорему множення, а для обчислення імовірності події С – теорему додавання:

Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru , де Модуль 7. Теорія ймовірностей. - student2.ru , Модуль 7. Теорія ймовірностей. - student2.ru . ◄

4. Три стрілка незалежно один від одного стріляють в ціль. Ймовірність попадання в ціль для першого стрілка дорівнює 0,7, для другого – 0,85, для третього – 0,9. Визначити ймовірність того, що в ціль попаде принаймні один стрілок.

Розв’язування.

► Обчислимо ймовірності протилежних подій Модуль 7. Теорія ймовірностей. - student2.ru ( ймовірність промаху першого стрілка); Модуль 7. Теорія ймовірностей. - student2.ru ( ймовірність промаху другого стрілка); Модуль 7. Теорія ймовірностей. - student2.ru ( ймовірність промаху третього стрілка); тоді Модуль 7. Теорія ймовірностей. - student2.ru – ймовірність одночасного промаху всіх трьох стрілків – обчислюється за теоремою про добуток:

Модуль 7. Теорія ймовірностей. - student2.ru

Але подія, протилежна події Модуль 7. Теорія ймовірностей. - student2.ru , полягає в попаданні в ціль принаймні одного стрілка. Отже, шукана ймовірність Модуль 7. Теорія ймовірностей. - student2.ru , тобто Модуль 7. Теорія ймовірностей. - student2.ru . ◄

5. В коробці знаходяться 20 зелених і 5 червоних кульки. Послідовно дістають 6 кульок, причому кожну обрану кульку повертають назад в коробку перед вийманням наступної. Яка ймовірність того, що серед вибраних кульок 4 зелені кульки?

Розв’язування.

► Ймовірність витягнути зелену кульку Модуль 7. Теорія ймовірностей. - student2.ru можна вважати однією й тією в усіх шести випробуваннях; Модуль 7. Теорія ймовірностей. - student2.ru – ймовірність витягнути червону (не зелену) кульку. Використовуючи формулу Бернуллі, маємо

Модуль 7. Теорія ймовірностей. - student2.ru . ◄

6. Маємо дві одинакові на вигляд урни. В першій урні 15 білих і 5 чорних кульок, в другій – 10 білих та 10 чорних кульок. З навмання вибраної урни дістали кульку. Обчислити ймовірність того, що ця кулька біла.

Розв’язування.

► Нехай Модуль 7. Теорія ймовірностей. - student2.ru – гіпотези, що полягають в виборі відповідно першої та другої урни. Вибір будь-якої урни рівноможливий, тому Модуль 7. Теорія ймовірностей. - student2.ru . Подія А – поява білої кульки , тоді Модуль 7. Теорія ймовірностей. - student2.ru – ймовірність витягнути білу кульку з першої урни, Модуль 7. Теорія ймовірностей. - student2.ru – ймовірність витягнути білу кульку з другої урни. Шукану ймовірність знаходимо за формулою повної ймовірності:

Модуль 7. Теорія ймовірностей. - student2.ru . ◄

Завдання для контрольних робіт

Контрольна робота № 1.

Модуль 1. «Комплексні числа».

Модуль 2. «Лінійна алгебра».

Теми: «Комплексні числа і дії над ними», «Форми запису комплексних чисел», «Елементи теорії матриць», «Загальна теорія СЛАР». Модуль 7. Теорія ймовірностей. - student2.ru

Завдання 1. Для комплексних чисел Модуль 7. Теорія ймовірностей. - student2.ru та Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru :

а) знайти модуль та головне значення;

б) записати їх в тригонометричній та показникові формах;

в) обчислити суму, різницю, добуток та частку комплексних

чисел Модуль 7. Теорія ймовірностей. - student2.ru та Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru .

1. Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru .

2. Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru .

3. Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru .

4. Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru .

5. Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru .

6. Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru .

Завдання 2. Розв’язати рівняння:

1. Модуль 7. Теорія ймовірностей. - student2.ru

2. Модуль 7. Теорія ймовірностей. - student2.ru

3. Модуль 7. Теорія ймовірностей. - student2.ru

4. Модуль 7. Теорія ймовірностей. - student2.ru

5. Модуль 7. Теорія ймовірностей. - student2.ru

6. Модуль 7. Теорія ймовірностей. - student2.ru

Завдання 3. Піднести до степеня:

1. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ; 4. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ;

2. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ; 5. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ;

3. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ; 6. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru .

Завдання 4. Обчислити визначники матриць:

1. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

2. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

3. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

4. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

5. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

6. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

Завдання 5. Розв’язати систему лінійних рівнянь методом Крамера:

1. Модуль 7. Теорія ймовірностей. - student2.ru 2. Модуль 7. Теорія ймовірностей. - student2.ru

3. Модуль 7. Теорія ймовірностей. - student2.ru 4. Модуль 7. Теорія ймовірностей. - student2.ru

5. Модуль 7. Теорія ймовірностей. - student2.ru 6. Модуль 7. Теорія ймовірностей. - student2.ru

Контрольна робота № 2.

Модуль 7. Теорія ймовірностей. - student2.ru

Модуль 3. «Аналітична геометрія на площині».

Теми: «Лінії на площині», «Криві другого порядку».

Завдання 1. Відомі вершини трикутника АВС. Знайти:

а) рівняння сторони АВ;

б) кут В трикутника АВС.

Виконати рисунок.

1. А(8, 6), В(6, 4), С(-2, 14).

2. А(4, 6), В(2, 2), С(-1, 3).

3. А(-6, -2), В(-3, 1), С(1, -4).

4. А(-1, -1), В(1, 3), С(5, -2).

5. А(-8, 4), В(-2, 1), С(1, -3).

6. А(2, -5), В(1, -3), С(4, 1).

Завдання 2. Привести задане рівняння еліпса до канонічного вигляду і обчислити його осі. Виконати рисунок.

1. 4х2+9у2=36; 4. 16х2+4у2=64;

2. 25х2+4у2=100; 5. 4х2+36у2=144;

3. 9х2+25у2=225; 6. 49х2+9у2=441;

Завдання 3. Обчислити координати фокусів і ексцентриситет заданої гіперболи. Виконати рисунок.

1. Модуль 7. Теорія ймовірностей. - student2.ru 4. Модуль 7. Теорія ймовірностей. - student2.ru

2. Модуль 7. Теорія ймовірностей. - student2.ru 5. Модуль 7. Теорія ймовірностей. - student2.ru

3. Модуль 7. Теорія ймовірностей. - student2.ru 6. Модуль 7. Теорія ймовірностей. - student2.ru

Завдання 5. Знайти фокус і директрису для заданої параболи. Виконати рисунок.

1. Модуль 7. Теорія ймовірностей. - student2.ru 4. Модуль 7. Теорія ймовірностей. - student2.ru

2. Модуль 7. Теорія ймовірностей. - student2.ru 5. Модуль 7. Теорія ймовірностей. - student2.ru

3. Модуль 7. Теорія ймовірностей. - student2.ru 6. Модуль 7. Теорія ймовірностей. - student2.ru

Контрольна робота № 3.

Модуль 7. Теорія ймовірностей. - student2.ru

Модуль 4. «Диференціальне числення функцій».

Теми: «Диференційованість функції однієї змінної», «Основні теореми диференціального числення», «Схема дослідження функції і побудова її графіка», «Диференційованість функцій багатьох змінних», «Дослідження функцій багатьох змінних на екстремум, умовний екстремум».

Завдання 1. Знайти похідні функцій: а) складної функції; б) неявної функції; в) параметрично заданої функції; г) використовуючи логарифмічне диференціювання.

1. а) Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru ;

в) Модуль 7. Теорія ймовірностей. - student2.ru г) Модуль 7. Теорія ймовірностей. - student2.ru .

2. а) Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru ;

в) Модуль 7. Теорія ймовірностей. - student2.ru г) Модуль 7. Теорія ймовірностей. - student2.ru .

3. а) Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru ; в) Модуль 7. Теорія ймовірностей. - student2.ru г) Модуль 7. Теорія ймовірностей. - student2.ru .

4. а) Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru ;

в) Модуль 7. Теорія ймовірностей. - student2.ru г) Модуль 7. Теорія ймовірностей. - student2.ru .

5. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru ;

в) Модуль 7. Теорія ймовірностей. - student2.ru г) Модуль 7. Теорія ймовірностей. - student2.ru .

6. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

в) Модуль 7. Теорія ймовірностей. - student2.ru г) Модуль 7. Теорія ймовірностей. - student2.ru .

Завдання 2. Знайти найбільше та найменше значення функції на заданому проміжку :

1) Модуль 7. Теорія ймовірностей. - student2.ru ; 4) Модуль 7. Теорія ймовірностей. - student2.ru ;

2) Модуль 7. Теорія ймовірностей. - student2.ru ; 5) Модуль 7. Теорія ймовірностей. - student2.ru ;

3) Модуль 7. Теорія ймовірностей. - student2.ru ; 6) Модуль 7. Теорія ймовірностей. - student2.ru

Завдання 3. Знайти всі похідні другого порядку для заданих функцій:

1. Модуль 7. Теорія ймовірностей. - student2.ru ;

2. Модуль 7. Теорія ймовірностей. - student2.ru ;

3. Модуль 7. Теорія ймовірностей. - student2.ru ;

4. Модуль 7. Теорія ймовірностей. - student2.ru ;

5. Модуль 7. Теорія ймовірностей. - student2.ru ;

6. Модуль 7. Теорія ймовірностей. - student2.ru .

Завдання № 4. Довести, що задана функція Модуль 7. Теорія ймовірностей. - student2.ru z задовольняє задане

рівняння:

1. Модуль 7. Теорія ймовірностей. - student2.ru

2. Модуль 7. Теорія ймовірностей. - student2.ru

3. Модуль 7. Теорія ймовірностей. - student2.ru

4. Модуль 7. Теорія ймовірностей. - student2.ru

5. Модуль 7. Теорія ймовірностей. - student2.ru

6. Модуль 7. Теорія ймовірностей. - student2.ru

Завдання № 5. Дослідити задану функцію на екстремум.

1. Модуль 7. Теорія ймовірностей. - student2.ru ;

2. Модуль 7. Теорія ймовірностей. - student2.ru ;

3. Модуль 7. Теорія ймовірностей. - student2.ru ;

4. Модуль 7. Теорія ймовірностей. - student2.ru ;

5. Модуль 7. Теорія ймовірностей. - student2.ru ;

6. Модуль 7. Теорія ймовірностей. - student2.ru .

Контрольна робота № 4.

Модуль 5. «Інтегральне числення функцій».

Теми: «Невизначений інтеграл», «Визначений інтеграл», «Застосування визначених інтегралів».

Завдання 1. Знайти невизначені інтеграли. Результат перевірити диференціюванням:

1. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

2. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru ;

3. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

4. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

5. а) Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru 6. а) Модуль 7. Теорія ймовірностей. - student2.ru б) Модуль 7. Теорія ймовірностей. - student2.ru

Завдання 2. Обчислити визначені інтеграли:

1. а) Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru ; 2. а) Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru ; 3. а) Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru ; 4. а) Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru ;

5. а) Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru ;

6. а) Модуль 7. Теорія ймовірностей. - student2.ru ; б) Модуль 7. Теорія ймовірностей. - student2.ru Модуль 7. Теорія ймовірностей. - student2.ru ;

Завдання 3 . Обчислити площу фігури, обмеженої графіками функцій:

1. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ;

2. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ;

3. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ;

4. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ;

5. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru ;

6. Модуль 7. Теорія ймовірностей. - student2.ru ; Модуль 7. Теорія ймовірностей. - student2.ru .

Контрольна робота № 5.

Модуль 6. «Диференціальні рівняння ».

Теми: «Диференціальні рівняння 1-го порядку», «Диференціальні рівняння 2-го порядку, що дозволяють знизити порядок», «Лінійні диференціальні рівняння 2-го порядку».

Завдання 1. Знайти загальний розв’язок (інтеграл) диференціальних рівнянь першого порядку:

1. Модуль 7. Теорія ймовірностей. - student2.ru 2. Модуль 7. Теорія ймовірностей. - student2.ru

3. Модуль 7. Теорія ймовірностей. - student2.ru 4. Модуль 7. Теорія ймовірностей. - student2.ru

5. Модуль 7. Теорія ймовірностей. - student2.ru 6. Модуль 7. Теорія ймовірностей. - student2.ru

Завдання 2. Знайти загальний розв’язок (інтеграл) диференціальних рівнянь другого порядку:

1. Модуль 7. Теорія ймовірностей. - student2.ru ; 2. Модуль 7. Теорія ймовірностей. - student2.ru ;

3. Модуль 7. Теорія ймовірностей. - student2.ru ; 4. Модуль 7. Теорія ймовірностей. - student2.ru ;

5. Модуль 7. Теорія ймовірностей. - student2.ru ; 6. Модуль 7. Теорія ймовірностей. - student2.ru .

Завдання 3. Знайти загальний розв’язок (інтеграл) лінійних диференціальних рівнянь другого порядку:

1. Модуль 7. Теорія ймовірностей. - student2.ru ; 2. Модуль 7. Теорія ймовірностей. - student2.ru ;

3. Модуль 7. Теорія ймовірностей. - student2.ru ; 4. Модуль 7. Теорія ймовірностей. - student2.ru ;

5. Модуль 7. Теорія ймовірностей. - student2.ru ; 6. Модуль 7. Теорія ймовірностей. - student2.ru .

Контрольна робота № 6.

Модуль 7. «Теорія ймовірностей».

Теми: «Основні означення, поняття і теореми теорія ймовірностей випадкових подій», «Класична ймовірність. Основні теореми теорії ймовірностей. Формула повної ймовірності, формула Байєса».

Завдання 1. Розв’язати задачу.

1. У коробці містяться 7 білих і 5 чорних кульки. З коробки виймають навмання 6 кульок. Знайти ймовірність події: А – усі кульки білі; С – чотири білі та дві чорні.

2. У лотереї 100 білетів із них 30 – виграшні. Яка ймовірність того, що з придбаних трьох білетів тільки один виграшний ?

3. Із 14 учнів, серед яких 5 дівчат, на вечір зустрічі без вибору запрошують трьох учнів. Яка імовірність, що серед запрошених буде одна дівчина?

4. В групі 13 хлопців та 12 дівчат. На кожне з трьох питань, заданих вчителем, відповіли по одному учню. Яка ймовірність того, що серед учнів, що відповідали було два хлопці і одна дівчина?

5. Кожен з трьох робітників виготовив по 15 деталей. Під час перевірки виявилося, що серед деталей виготовлених першим, другим і третім робітником окремо, стандартних деталей було 12, 10 і 11 відповідно. У кожного робітника взяли навмання по дві деталі. Яка ймовірність того, що всі шість взяті деталі будуть стандартними ?

6. Із двох гармат стріляють по цілі. Імовірність влучення у ціль першою і другою гарматою відповідно дорівнюють 0,6 і 0,9.Знайти ймовірність того, що при одному залпі по цілі влучать тільки з однієї гармати ?

Завдання 2. Розв’язати задачу.

1. Монету підкидають 8 раз. Яка ймовірність, того що 6 раз вона упаде

гербом вверх ?

2. Три спортсмени намагаються влучити в ціль незалежно один від

одного. Ймовірність влучення відповідно дорівнюють 0,3; 0,1; 0,6.

Знайти ймовірність того, що: а) хоча б один спортсмен влучив у ціль;

б) два спортсмени влучили в ціль.

3. Імовірність того, що замовлення в бібліотеці першої книги буде

виконане, дорівнює 0,5, другої – 0,7, третьої – 0,4. Визначити

ймовірність того, що бібліотека виконає замовлення: а) принаймні

на одну книгу; б) рівно на дві книги.

4. В наслідок багаторічних спостережень помітили, що з 1000

новонароджених у середньому 515 хлопчиків і 485 дівчаток. Знайти

ймовірність того, що в родині, де п’ятеро дітей, не більш як три

хлопчики?

5. Троє студентів розв’язують одну задачу. Яка імовірність того, що

задача буде розв’язана, якщо ймовірність зробити це для них дорівнює

р1 = 0,5; р2 = 0,7; р3 = 0,45 ?

6. У першому ящику міститься 5 білих кульок, 11чорних та 8 зелених, а

в другому – 10 білих, 8 чорних і 6 зелених. Навмання беруть по одній

кульці з кожного ящика. Яка ймовірність того, що вони одного

кольору?

Завдання 3. Розв’язати задачу.

1. У рибалки є три улюблених місця риболовлі, які він відвідує з

однаковою ймовірністю. Ймовірність клювання на І місці – Модуль 7. Теорія ймовірностей. - student2.ru ;

на ІІ – Модуль 7. Теорія ймовірностей. - student2.ru ; на ІІІ – Модуль 7. Теорія ймовірностей. - student2.ru . Рибалка закинув вудку у навмання вибраному

місці. Знайти ймовірність того, що: а) риба клюнула; б) риба клюнула

на І місці .

2. У комп’ютерному магазині за рік продано 1000 моніторів, 300

принтерів 100 сканерів. Протягом гарантійного терміну в сервісний центр надходять на ремонт у середньому 0,5 Модуль 7. Теорія ймовірностей. - student2.ru моніторів, 1 Модуль 7. Теорія ймовірностей. - student2.ru принтерів

і 1,5 Модуль 7. Теорія ймовірностей. - student2.ru сканерів. Знайти ймовірність того, що навмання вибрана з перерахованих за серійним номером одиниця товару надійшла протягом гарантійного терміну на ремонт у сервісний центр є монітор.

3. На заводі металевих виробів болти виготовляють на трьох машинах.

Перша машина виробляю 25 Модуль 7. Теорія ймовірностей. - student2.ru , друга – 35 Модуль 7. Теорія ймовірностей. - student2.ru і третя – 40 Модуль 7. Теорія ймовірностей. - student2.ru усієї

продукції, а брак становить відповідно 3 Модуль 7. Теорія ймовірностей. - student2.ru , 5 Модуль 7. Теорія ймовірностей. - student2.ru і 2 Модуль 7. Теорія ймовірностей. - student2.ru . а) Яка ймовірність

того, що навмання взятий болт виявиться бракованим ? б) Навмання

взятий болт виявився бракованим. Яка ймовірність того, що він

зроблений третьою машиною ?

4. Маємо три одинакові на вигляд урни. В першій урні 25 білих кульок, в

другій – 10 білих та 15 чорних кульок, третій – 25 чорних кульок. З

навмання вибраної урни дістали білу кульку. Обчислити ймовірність

того, що кульку дістали з другої урни.

5. У цеху 20 верстатів. З них 10 марки А, 6 марки В і 4 марки С.

ймовірність того, що якість деталі виявиться найвищою, для цих

верстатів відповідно становить 0,9; 0,8; 0,7. 1) Знайти, який відсоток

деталей вищої якості випускає цех в цілому ? 2) Якість деталі, взятої

навмання, виявилася найвищою. Яка ймовірність того, що вона

зроблена на верстаті марки А?

6. В першій урні 7 синіх та 8 зелених кульок, в другій 5 синіх та 6 зелених

кульок. З другої урни в першу поклали одну кульку, а потім з першої

навмання дістали одну кульку. Знайти ймовірність того, що вийнята

кулька – синя.

Наши рекомендации