Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . (82)

Доказательство. Пусть замкнутая поверхность S охватывает часть диэлектрика (заштрихован на рис.25, слева). При включении поля вследствие поляризации заряд проходит через элемент dS этой поверхности (на рис.26 справа – увеличенный фрагмент). Пусть смещение положительного заряда характеризуется вектором Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , а отрицательного – вектором Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Через dS наружу выйдет положительный заряд Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru из внутренней (пунктирной) части косого цилиндра, а внутрь войдет отрицательный заряд Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru из внешней части цилиндра, что эквивалентно переносу положительного заряда в обратном направлении. Значит, суммарный связанный заряд, выходящий наружу через dS, равен

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru = Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru ,

где Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru - расстояние, на которое сместились друг относительно друга центры масс положительных и отрицательных зарядов при поляризации. Согласно (80) Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru = Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Проинтегрировав это выражение, найдем весь заряд, который вышел из объема внутри замкнутой поверхности S при поляризации. Внутри останется избыточный заряд - Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru противоположного знака, Þ получим выражение (82): Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , что и требовалось доказать.

Теорема Гаусса для поля вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Поскольку источниками электрического поля являются любые заряды, а именно: связанные и сторонние (т.е. не входящие в состав молекул диэлектрика, мы их обозначали просто q), то теорему Гаусса для вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru можно переписать так Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Подставим Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru из (74): Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Учитывая, что оба интеграла берутся по одной поверхности S, перенесем второй интеграл влево и запишем под одним знаком: Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Вспомогательный вектор во внутренних круглых скобках обозначают

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . (83)

и называют электрическим смещением. Тогда для него можно компактно сформулировать теорему Гаусса:

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . (84)

Поток вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru сквозь любую замкнутую поверхность равен суммарному стороннему заряду внутри этой поверхности.

Связь между векторами Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru и Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Подставив выражение (81), верное только для изотропных диэлектриков: Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru =æεо Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru ® (83), получим Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru о(1+æ) Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , или

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , (85)

где диэлектрическая проницаемость ε=æ+1. Для всех веществ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , а для вакуума Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Из (85) следует, что векторы Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru и Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru направлены одинаково. Поскольку источниками вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru являются только сторонние заряды, линии вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru проходят области с диэлектриком, не прерываясь. Это позволяет выбрать правильную тактику при решении задач: сначала найти вектор Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , а затем, используя (85), вычислить вектор Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru (ибо расположение сторонних зарядов обычно известно, а распределение связанного заряда представляет весьма сложную задачу).

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru Условия для векторов Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru и Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru на границе раздела диэлектриков. Пусть два однородных изотропных диэлектрика имеют общую границу (рис.27), и напряженность электрического поля в диэлектрике 1 равно Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , а в диэлектрике 2 - Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Возьмем вдоль границы прямоугольный контур столь малой длины l, чтобы вдоль него напряженность Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru в каждом диэлектрике пренебрежимо мало изменялась. Устремим высоту контура к нулю, тогда циркуляция вдоль этого контура сведется к сумме вдоль сторон l и по теореме о циркуляции должна быть равна нулю:

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Это значит: тангенциальная составляющая вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru одинакова по обе стороны от границы.

Теперь возьмем цилиндр малого сечения S на границе раздела (рис.28). Тогда по теореме Гаусса для вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru (при стремлении высоты цилиндра к нулю и одновременно к границе): Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , где s - поверхностная плотность стороннего заряда на границе раздела. Отсюда Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Если сторонних зарядов на границе раздела нет, то Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , т.е. нормальная составляющая вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru одинакова по обе стороны от границы.

Величины Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru и Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru меняются при переходе границы. Запишем (85) в проекциях: Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , и так как Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Это значит, нормальная составляющая вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru терпит скачок при переходе границы, а сами линии вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru преломляются. Запишем (85) в проекции на тангенциальное направление: Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , и так как Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Это значит, тангенциальная составляющая вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru терпит скачок при переходе границы, а сами линии вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru преломляются. Сопоставление выражений в рамках показывает, что если Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , то при переходе из среды 1 в среду 2 нормальная компонента вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru уменьшается, а тангенциальная компонента вектора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru увеличивается.

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru Энергия электрического поля. Рассмотрим процесс зарядки конденсатора (рис.29). Пусть верхняя пластина заряжена зарядом +q до потенциала φ1, а нижняя – зарядом -q до потенциала φ2. Работа против сил поля при переносе очередной порции заряда +dq>0 с нижней пластины на верхнюю идет на увеличение энергии взаимодействия зарядов: Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru = Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru = Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Выразим напряжение через емкость конденсатора ( Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru ): Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Далее интегрируем: Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Емкость плоского конденсатора Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , где S – площадь каждой из пластин, d – расстояние между ними, Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Умножим числитель и знаменатель на S и учтем, что Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru и Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru (объем пространства между пластинами), Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Теперь умножим числитель и знаменатель на Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru и учтем, что Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ энергия заряженного конденсатора

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . (86)

Отношение Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru является энергией единицы объема и называется плотностью энергии электрического поля

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . (87)

Учтем, что Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru = Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . Умножим это равенство скалярно на вектор Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru , Þ Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru ® (87), Þ

Теорема Гаусса для вектора . Поток вектора сквозь произвольную замкнутую поверхность равен минус избыточному связанному заряду диэлектрика внутри этой поверхности - student2.ru . (88)

Полученное выражение представляет собой сумму плотности электрической энергии в вакууме и плотности энергии поляризации диэлектрика. Следовательно, электрическая энергия локализована в самом поле: как там, где есть вещество, так и там, где его нет. Однако стационарное поле может существовать только в присутствие порождающих его зарядов, а вот переменные поля могут существовать и самостоятельно.

Наши рекомендации