Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП)

Задача: пусть в схеме Гаусса-Маркова Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru вектор случайных остатков с числовыми характеристиками Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , имеет нормальный закон распределения. Требуется оценить параметры Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru и Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru модели методом максимального правдоподобия.

Решение: Будем предполагать, что объясняющие переменные в модели

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

детерминированные, матрицу Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru полагаем известной. Из Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru и сделанного предположения о числовых характеристиках и законе распределения вектора Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru следует, что вектор Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru тоже обладает нормальным законом распределения Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

с числовыми характеристиками Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru и Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru .

Для отыскания оценок параметров ММП действуем согласно следующему алгоритму:

1) составим функцию правдоподобия выборки Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

( Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

и вычисляем ее логарифм:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

2) Найдем производные логарифма по аргументам и приравняем их к нулю:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

3) Решаем полученную систему уравнений. Сначала из первого уравнения ( после умножения его на Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru ) находим Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru :

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Затем подставляем его во второе уравнение системы и после умножения этого уравнения на Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru находим Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru = Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , где Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru . Полученные величины образуют решение системы и являются искомыми ММП-оценками параметров (эффективными и ассимптотически несмещенными).

Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).

Примером нелинейной по коэффициентам функции регрессии служит производственная функция Кобба-Дугласа:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru (1)

В ней Y – уровень выпуска продукции за принятый отрезок времени; K и L – уровни соответственно основного капитала и живого труда, использованные в процессе выпуска величины Y. Подчеркнём, что функция не линейна по коэффициентам Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru . Это значит, что оценить параметры эконометрической модели с такой функцией регрессии строго нельзя ни одним из обсуждённых методов. Заметим, однако, что преобразование логарифмирования позволяет трансформировать функцию К-Д к линейной по коэффициентам:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru (2)

Функция регрессии в уравнении (1) называется стандартной, поскольку операция логарифмирования трансформировала её к линейной по коэффициентам.

С учётом свойств операции логарифмирования составим следующим образом спецификацию модели товаров и услуг в стране:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru (3)

(случайные возмущения включили в виде подходящего сомножителя)

После операции логарифмирования с учётом отмеченных в (2) обозначений, мы получили трансформацию модели (3) в виде базовой модели эконометрики:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

После оценивания линеаризованной модели можно вернуться при помощи операции возведения в степень к оценке исходной модели (3), где

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.

Рассмотрим построение оптимального (наиболее точного) прогноза искомого значения y0 эндогенной переменной линейной модели множ. регрессии на примере модели Оукена:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , где

y – темп прироста реального ВВП, x0=Ut-Ut-1 – изменение уровня безработицы.

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru 0 – значение экзогенной переменной, при которой должен быть вычислен прогноз величины y0.

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Прогноз величины y0 обозначим символом Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru .

Мы предполагаем, что искомая величина и известные значения экзогенной переменной связаны м-ду собой уравнением линейной модели:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Прогноз Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru будем строить так, чтобы оказались справедливыми следующие 2 требования к ошибкам прогноза:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru – ожидаемая ошибка прогноза равна 0 (несмещённость прогноза)

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru – квадрат среднеквадратической ошибки прогноза минимален –кучность рассеивания минммальна(разброс минимален)

Справедлива следующая теорема – теорема об оптимальном прогнозе: Пусть справедливы все предпосылки теоремы Гаусса-Маркова для обучающей выборки Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru . Тогда:

А) оптимальный прогноз величины y0 вычисляется по формуле:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru (1)

Чтобы вычислить оптимальный прогноз, нужно оценить коэффициенты модели МНК и подставить в уравнение регрессии известное значение эндогенной переменной.

Б) Точность прогноза вычисляется по правилу:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , где

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru –квадратичная форма заданных значения экзогенной переменной, в случае модели Оукена Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Неотрицательная константа q0 отражает влияние на точность прогноза ошибок оценок коэффициентов модели-точность прогноза падает по мере удаления значения x0 регрессора x от его выборочного среднего.

Среднеквадратичная ошибка прогноза (1) отыскивается по формуле: Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru = Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

36. Тест Голдфелда-Квандта гомоскедастичности случайного остатка в ЛММР

Обратимся к предпосылке теоремы Гаусса-Маркова №2: Дисперсия случайного остатка не зависит от значений объясняющих переменных: Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Обсудим тестирование этой предпосылки, записав её в виде следующей статистической гипотезы:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru (*)

В основании процедуры проверки этой гипотезы лежит следствие из теоремы Гаусса-Маркова: при оценивании коэффициентов модели по двум группам уравнений наблюдений (в первую группу входят, например, n1 первых уравнений, во вторую – n2 последних уравнений наблюдений) следующая дробь:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Эта дробь обладает законом распределения Фишера с количеством степеней свободы m1 =n1-(k+1) и m2= n2-(k+1).

Гипотеза Н0 может быть принята, если GQ не превосходит 2%-ой точки распределения Фишера.

Замечание: Гипотеза Н0 о гомоскедастичности остатка означает, что при любых перестановках наблюдений дисперсии случайных остатков остаются одинаковыми.

Обычное нарушение на практике возникает тогда, когда дисперсия случайного остатка возрастает (или убывает) с ростом абсолютных значений объясняющих переменных.

Тест Голдфелда-Квандта реализуется в итоге следующих шагов:

Шаг 1.Упорядочить уравнения наблюдений по возрастанию суммы модулей значений предопределенных переменных модели, т.е. по возрастанию значений Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru .

Замечание: В этот пункт процедуры Г-К заложена естественная предпосылка, что возможная гетероскедастичность случайного остатка в модели, т. е. зависимость его условной дисперсии Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru от объясняющих переменных модели имеет специальный вид:

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , (1)

причём ф-ия f(z) является либо возрастающей, либо убывающей. Подчеркнём, что если случайный остаток гомоскедастичен, то любая зависимость Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru от Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , в частности зависимость (1) отсутствует.

Шаг 2. По первым n’ упорядоченным уравнениям наблюдений объекта (где n’ удовлетворяет условиям k+1<n’, n’≈0,3n, k+1 – кол-во оцениваемых коэффициентов ф-ии регрессии) вычислить МНК-оценки параметров модели и величину Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , где Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru – МНК-оценка случайного возмущения ui.

Шаг 3. По первым n’ упорядоченным уравнениям наблюдений объекта вычислить МНК-оценки параметров модели и величину Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Шаг 4.Вычислить статистику
Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru

Шаг 5. Задаться уровнем значимости α и с помощью ф-ии FРАСПОБР при количествах степенней свободы 𝑣1, 𝑣2, где 𝑣1= 𝑣2=n’-(k+1), определить (1-α)-квантиль Fкрит=F1-α распределения Фишера.

Шаг 6. Принять гипотезу, если справедливы неравенства

Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , т. е. при этих справедливых неравенствах случайный остаток в модели полагать гомоскедастичным. В противном случае, гипотезу (*) отклонить как противоречащую реальным данным и делать вывод о гетероскедастичности случайного остатка в модели.

Тест корректен, когда остатки распределены по нормальному закону и выполнены другие предпосылки теоремы Г-М.

Обоснование: из-за утверждения выше Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru – случайные переменные и распределены по закону хи-квадрат с количеством степеней свободы n’-(k+1), кроме того они независимы. А значит, Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru - случайные переменные и распределены по Фишеру с количеством степеней свободы 𝑣1, 𝑣2. Следовательно критерием нулевой гипотезы может служить множество: Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru . А если величина Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru попадает в это множество, то гипотезу следует отклонить в пользу альтернативной гипотезы Оценивание параметров линейной модели множественной регрессии (ЛММР) при нормальном векторе случайных остатков методом максимального правдоподобия (ММП) - student2.ru , представляющей отрицание гипотезы (*), т. е. означающей гомоскедастичность случайного остатка в модели.


Наши рекомендации