Характеристики резонансных контуров

Последовательное соединения элементов R, L, C называется последовательным колебательным контуром, в нем возможен резонанс напряжения. Резонансом напряжения называется такой режим в колебательном контуре, при котором частота источника э.д.с. Характеристики резонансных контуров - student2.ru равна частоте собственных колебании контура Характеристики резонансных контуров - student2.ru

Выходное напряжения u= Характеристики резонансных контуров - student2.ru Характеристики резонансных контуров - student2.ru

1.При резонансе напряжения, входное сопротивление становится чисто резистивным, реактивное входное сопротивление становится число резистивным, реактивное входное сопротивление равно нулю

Ẕ=R+j Характеристики резонансных контуров - student2.ru , Характеристики резонансных контуров - student2.ru Ẕ=R.

2.резонансная частота контура определяется из соотношения Характеристики резонансных контуров - student2.ru т.е. Характеристики резонансных контуров - student2.ru

3.Так как Характеристики резонансных контуров - student2.ru = Характеристики резонансных контуров - student2.ru + Характеристики резонансных контуров - student2.ru , X=0, Z=R.полное сопротивление минимально, тогда токи в цепи Характеристики резонансных контуров - student2.ru и активная мощность в режиме резонанса максимальны P= Характеристики резонансных контуров - student2.ru .

4. Характеристики резонансных контуров - student2.ru Характеристики резонансных контуров - student2.ru U= Характеристики резонансных контуров - student2.ru Напряжения на реактивных элементах равны величине и противоположны по направлению. Реактивное мощности тоже равны Характеристики резонансных контуров - student2.ru

5. Характеристики резонансных контуров - student2.ru характеристическое или волновое сопротивление контура.

6. Отношение напряжении на реактивных элементах к приложенному напряжению, или отношение реактивных мощностей к активной мощности в режиме резонанса называется добротностью контура

Характеристики резонансных контуров - student2.ru -добротность контура.

Добротность контура указывает во сколько раз напряжение на индуктивности и емкости при резонансе больше, чем напряжение приложенное к цепи. Добротность обычных контуров бывает порядка от 50 до 300. Это означает, что напряжение и мощность реактивных элементов в десятки и в сотни раз превышает напряжение и мощность источника. Векторная диаграмма в момент резонанса.

Параллельное соединение элементов R,L,C называется параллельным колебательным контуром, в нем возможен резонанс токов. Резонанс токов наступает, когда выходная проводимость реактивная равна нулю.

……………………

Ток в неразветвленной части: ḻ= Характеристики резонансных контуров - student2.ru где Y-входная комплексная проводимость.

Y=G-j Характеристики резонансных контуров - student2.ru При резонансе токов B=0? Характеристики резонансных контуров - student2.ru Характеристики резонансных контуров - student2.ru Характеристики резонансных контуров - student2.ru Характеристики резонансных контуров - student2.ru резонансная частота контура.

При резонансе U⦁ Характеристики резонансных контуров - student2.ru Характеристики резонансных контуров - student2.ru ток через индуктивный элемент равен по модулю току через емкостный элемент и находится в противофазе и могут превышать входной ток.

Добротность параллельного контура, показывает во сколько раз ток в реактивных элементах при резонансе больше тока на входе контура.

Ǫ= Характеристики резонансных контуров - student2.ru добротность параллельного контура, показывает во сколько раз ток в реактивных элементах при резонансе больше тока на входе контура.

Частотные характеристики параллельного колебательного контура.

Характеристики резонансных контуров - student2.ru Характеристики резонансных контуров - student2.ru

Частотное характеристики резонансных контуров.

Пусть к цепи пртложенно синусоидальное напряжение Характеристики резонансных контуров - student2.ru амплитуда которого постоянна, а частота изменяется от изменение частоту проводит к изменению параметров цепи. Меняется реактивное сопротивление, полное сопротивление, а также уголь Характеристики резонансных контуров - student2.ru Зависимость действующих или амплитудных значений тока I и напряжении Характеристики резонансных контуров - student2.ru от частоты называется резонансными кривыми.

Характеристики резонансных контуров - student2.ru Характеристики резонансных контуров - student2.ru = Характеристики резонансных контуров - student2.ru X( Характеристики резонансных контуров - student2.ru )= Характеристики резонансных контуров - student2.ru называется частотным характеристиками цепи, а зависимости I( Характеристики резонансных контуров - student2.ru ), Характеристики резонансных контуров - student2.ru Характеристики резонансных контуров - student2.ru называется резонансными кривыми.

Характеристики резонансных контуров - student2.ru

Характеристики резонансных контуров - student2.ru

Характеристики резонансных контуров - student2.ru

Характеристики резонансных контуров - student2.ru

……………………………

Для удобства сравнения резонансных кривых друг с другом будем рассматривать зависимости: Характеристики резонансных контуров - student2.ru где Характеристики резонансных контуров - student2.ru ток при резонансе, Характеристики резонансных контуров - student2.ru -резонансное частота.

Характеристики резонансных контуров - student2.ru .

Чем больше Ǫ, тем острее резонансная кривая, тем лучше избирательные свойства цепи.

……………………

Вопросы для самоконтроля:

1. Условия для наступления в цепи резонанса напряжении.

2. Чему равно входное сопротивление цепи в момент резонанса.

3. Векторная диаграмма цепи в момент резонанса

4. Добротность контура. Применение явления резонанса.

5. Условия резонанса тока.

6. Частотные характеристики последовательно колебательного контура.

7. Полоса пропускания контура и ее связь с добротностью контура.

Литература:

1.Атабеков Г.И. Основы теории цепей.-М.: Энергия, 2006-544с.

2.бакалов В.П., Воробинко П.П. Крук Б.И Теория электрических цепей.-М.: Радио и связь, 1998-440с.

3.Под редакцией Ионкина П.Теоритические основы электротехники. М.:

Высшая школа.1976-545с.

4.Зевеке Г.В Ионкин П.А и др. Основы теории цепей. М.:Энергия, 1989-528с.

Планы практических занятий

Тема №1.Эквивалентное преобразования электрических цепей. Преобразование треугольника сопротивлений в звезду сопротивлении. Определении эквивалентных сопротивлении

Повторить эквивалентные преобразования простейших резистивных цепей: последовательное, параллельное, смешанное соединение цепей. Изучить преобразование треугольника сопротивление в звезду. Формулы преобразование. Закрепить и уметь применять эквивалентные преобразования при решении практических задач.

Задания: Изучить эквивалентные преобразование электрических цепей.

Уметь рассчитывать эквивалентные сопротивления цепей. Преобразование треугольника сопротивлении в звезду. Уметь преобразовывать сложные электрические цепи в простые в помощью эквивалентных преобразований.

Решение задач 1.2, 1.3, 1.8, 1.10, 1.50 Л [1]

Основные вопросы:

Определить эквивалентное сопротивление трех параллельно соединенных резисторов. Получить формулу «разброса» для нахождения токов в параллельных ветвях. Рассчитать цепь при смешанном соединении резисторов.

Методические рекомендации к выполнению:

Изучить эквивалентные преобразования «треугольника» сопротивлений в звезду. Вспомнить простейшие эквивалентные преобразования: последовательное, параллельное, смешанное соединение цепей.

Литература:

1. Шебес М.Р., Каблукова М.В. Задачник по теории электрических цепей. – М.: Высшая школа, 1990. – 544с.

2. Атабеков Г.И. Основы теории цепей. –М.: Энергия, 2006.- 540с.

3. Бакалов В.П., Воробиенко П.П. Теория электрических цепей. – М.: Радио и связь, 1998.- 440с.

4. Зевеке Г.В., Ионкин П.А., и др. Основы теории цепей.М.: Энергия, 1989.-528с.

Тема№2.Преобразование звезды сопротивление в треугольник сопротивлений. Источники э.д.с. и тока. Эквивалентные преобразование источников.

Цели занятия:

Рассмотреть и закрепить преобразование «звезды» сопротивлений в треугольник сопротивлений. Рассмотреть эквивалентные преобразование источников. Закрепить и уметь применить знания при решении практических задач.

Задания: Решить задачи 1.51, 1.52, 1.53, 1.54, 1.55, 1.56, 1.58,1.59 Л[1].

Основные вопросы:

Особенности преобразования звезды сопротивлений в треугольник.

Эквивалентные преобразование источника тока в источник э.д.с..

Эквивалентные преобразование источника э.д.с. в источник тока.

Методические указания к выполнению:

Изучить эквивалентные преобразования сопротивлений по схеме «звезда» в треугольник. Вспомнить простейшие эквивалентные преобразования: последовательное, параллельное, смешанное соединение цепей.

Литература:

1. Шебес М.Р., Каблукова М.В. Задачник по теории электрических цепей. – М.: Высшая школа, 1990. – 544с.

2. Атабеков Г.И. Основы теории цепей. –М.: Энергия, 2006.- 540с.

3. Бакалов В.П., Воробиенко П.П. Теория электрических цепей. – М.: Радио и связь, 1998.- 440с.

4. Зевеке Г.В., Ионкин П.А., и др. Основы теории цепей.М.: Энергия, 1989.-528с.

Тема№3.Электрические цепи гармонического тока. Определение эквивалентных комплексных сопротивлений. Алгебраическая и показательная формы. Треугольник проводимостей.

Цель занятия:

Рассмотреть и закрепить электрические цепи гармонические тока. Уметь определять выражение комплексного сопротивления и комплексной проводимости, модуль, аргумент. Уметь работать с комплексными числами, производить действия с комплексными числами уметь переходить из показательной формы в алгебраическую, из алгебраической в показательную. Изучить законы Ома и Кирхгофа в комплексной форме.

Задания:Решить задачи 2.2, 2.3, 2.4, 2.5, 2.8, 2.18, 2.19,2.24, 2.30, 2.32, 2.34 Л[1].

Основные вопросы:

Изображения синусоидальной функции вращающимся вектором.

Изображения синусоидальной функции комплексным числом.

Полное, активное и реактивное сопротивление. Треугольник сопротивлений.

Полная, активная и реактивная проводимость. Треугольник проводимостей.

Методические указания к выполнению:

Изучить и закрепить особенности гармонического тока. Решить задачи для закрепления данного материала. Уметь определить комплексное, полное, активное и реактивное сопротивление. Уметь определять комплексную, полную, активную, реактивную проводимость. Аргумент комплексного сопротивления. Рассмотреть законы Ома и Киргхгофа в комплексной форме.

Литература:

1. Шебес М.Р., Каблукова М.В. Задачник по теории электрических цепей. – М.: Высшая школа, 1990. – 544с.

2. Атабеков Г.И. Основы теории цепей. –М.: Энергия, 2006.- 540с.

3. Бакалов В.П., Воробиенко П.П. Теория электрических цепей. – М.: Радио и связь, 1998.- 440с.

4. Зевеке Г.В., Ионкин П.А., и др. Основы теории цепей.М.: Энергия, 1989.-528с.

Тема №4.Методы представления гармонических функций. Символический метод. Пассивные элементы гармонического тока. Векторная диаграмма. Топографическая диаграмма. Измерение мощностей.

Цель занятия:

Рассмотреть методы представления гармонической функции.

Представление гармонической функции графиком во временной области. Изображение гармонической функции вращающимся вектором. Изображение гармонической функции комплексным числом. Изучить построение векторных и топографических диаграмм. Рассмтреть измерение мощностей в цепи гармонического тока.

Задания:Решение задачи 2.43, 2.48 2.49, 2.50, 2.51, 2.52, 2.53 Л[1].

Основные вопросы:

Рассмотреть методы представления гармонических функций.

Методы расчета цепей гармонического тока в комплексной форме. Символический метод. Векторные диаграммы отдельных элементов, векторные диаграммы отдельных электрических цепей. Топографические диаграммы. Измерение мощности ваттметром.

Методические указания к выполнению:

Изучить методы расчета цепей гармонического тока. Особенности применения методов расчета постоянного тока для решения задач гармонического тока.

Литература:

1. Шебес М.Р., Каблукова М.В. Задачник по теории электрических цепей. – М.: Высшая школа, 1990. – 544с.

2. Атабеков Г.И. Основы теории цепей. –М.: Энергия, 2006.- 540с.

3. Бакалов В.П., Воробиенко П.П. Теория электрических цепей. – М.: Радио и связь, 1998.- 440с.

4. Зевеке Г.В., Ионкин П.А., и др. Основы теории цепей.М.: Энергия, 1989.-528с.

Тема №5.Частотные характеристики электрических цепей. Комплексные передаточные функции линейных электрических цепей. Частотные характеристики последовательного колебательного контура. Частотные характеристики параллельного колебательного контура.

Цель занятия:Изучить комплексные передаточные характеристики электрических цепей: комплексную передаточную функцию по току, комплексное передаточное сопротивление и комплексная передаточная проводимость. Изучить построение амплитудно-частотную и фаза – частотных характеристик. Изучить и закрепить частотные характеристики резонансные колебательного контура.

Занятия:Построить амплитудно-частотную и фазо – частотную характеристики комплексной передаточной функцию по напряжению последовательного колебательного контура для различных значении добротности, изменяя частоту в пределах 0.25 Характеристики резонансных контуров - student2.ru до 2 Характеристики резонансных контуров - student2.ru .

Построить амплитудно-частотную и фаза – частотную характеристики комплексной передаточной функцию по току параллельного колебательного контура изменяя частоту в пределах 0.25 Характеристики резонансных контуров - student2.ru до 2 Характеристики резонансных контуров - student2.ru , для различных значений добротности.

Методические рекомендации к выполнению:

Изучить частотные характеристики электрических цепей, уделив особое внимание на построение амплитудно-частотную и фаза – частотную характеристик.

Литература:

1. Шебес М.Р., Каблукова М.В. Задачник по теории электрических цепей. – М.: Высшая школа, 1990. – 544с.

2. Атабеков Г.И. Основы теории цепей. –М.: Энергия, 2006.- 540с.

3. Бакалов В.П., Воробиенко П.П. Теория электрических цепей. – М.: Радио и связь, 1998.- 440с.

4. Зевеке Г.В., Ионкин П.А., и др. Основы теории цепей.М.: Энергия, 1989.-528с.

Тема №6Частотные характеристики реактивных двухполюсников,

Цель занятия:

Изучить и закрепить общие свойства реактивных двухполюсников. Изучить частотные зависимости входных функции цепи: входного комплексного сопротивления и входной комплексной проводимости. Изучить канонические схемы реактивных двухполюсников.

Задание:Построить зависимости входных функций от частоты простых двухполюсников, состоящий из одного элемента: одного индуктивного и одного емкостного элемента(одноэлементные двухполюсники).

Построить функции входного сопротивления и входной проводимости двухэлементных двухполюсников.

Построить функции входного сопротивления и проводимости трехэлементных двухполюсников.

Методические рекомендации к выполнению:

Изучить и закрепить частотные характеристики реактивных двухполюсников.

Уметь строить зависимости входных функции от частоты.

Литература:

1. Шебес М.Р., Каблукова М.В. Задачник по теории электрических цепей. – М.: Высшая школа, 1990. – 544с.

2. Атабеков Г.И. Основы теории цепей. –М.: Энергия, 2006.- 540с.

3. Бакалов В.П., Воробиенко П.П. Теория электрических цепей. – М.: Радио и связь, 1998.- 440с.

4. Зевеке Г.В., Ионкин П.А., и др. Основы теории цепей.М.: Энергия, 1989.-528с.

Тема №7.Особенности анализа индуктивно связанных элементов. Расчет по законам Кирхгофа. Метод контурных токов. Воздушный трансформатор.

Цель занятия:

Изучить и закрепить основные методы анализа цепей с индуктивно связанными элементами. Изучить особенности явлений, происходящих в электрических цепях с индуктивно связанными элементами. Уметь определять коэффициент взаимной индукции, составлять уравнения равновесия, уметь определять одноименные зажимы и построения векторных диаграмм.

Задания.Изучить методы анализа цепей с индуктивными связями: расчет по законом Кирхгофа и метод контурных токов. Изучить особенности анализа этих цепей. Изучить методы развязки индуктивно связанных цепей. Изучить частотные характеристики связанных колебательных контуров.Построить амплитудно-частотную характеристику связанных колебательных контуров.

Методические рекомендации к выполнению:

Изучить и закрепить особенности индуктивно связанных цепей. Уметь применять законы Кирхгофа, метод контурных тоов. Для инфуктивно связанных цепей подходят только эти методы расчета.

Литература:

1. Шебес М.Р., Каблукова М.В. Задачник по теории электрических цепей. – М.: Высшая школа, 1990. – 544с.

2. Атабеков Г.И. Основы теории цепей. –М.: Энергия, 2006.- 540с.

3. Бакалов В.П., Воробиенко П.П. Теория электрических цепей. – М.: Радио и связь, 1998.- 440с.

4. Зевеке Г.В., Ионкин П.А., и др. Основы теории цепей.М.: Энергия, 1989.-528с.

Тема №8.Методы расчета и измерение мощностей в трехфазных цепях.

Цель занятия:

Закрепить методы симметричных и несимметрических трехфазных цепей. Закрепить особенности методы симметричных составляющих для расчета несимметрических трехфазных цепей. Изучить свойство трехфазных цепей в отношении симметричных составляющих токов и напряжений. Изучить методы измерения мощности в трехфазных цепях.

Задания:

Произвести расчет трехфазной цепи при поперечной несимметрий.

Произвести расчет трехфазной цепи при продольной несимметрии.

Произвести расчет мощности трехфазной цепях.

Методические рекомендации к выполнению:

Изучить методы анализ симметричных и несимметрических трехфазных цепей.

Изучить метод симметрических составляющих для решения несимметричных режимов в трехфазных цепях.

Литература:

1. Шебес М.Р., Каблукова М.В. Задачник по теории электрических цепей. – М.: Высшая школа, 1990. – 544с.

2. Атабеков Г.И. Основы теории цепей. –М.: Энергия, 2006.- 540с.

3. Бакалов В.П., Воробиенко П.П. Теория электрических цепей. – М.: Радио и связь, 1998.- 440с.

4. Зевеке Г.В., Ионкин П.А., и др. Основы теории цепей.М.: Энергия, 1989.-528с.

Наши рекомендации