Уравнением моментов

в) дифференциал кинетической энергии уравнением моментов - student2.ru системы равен сумме элементарных работ всех действующих на систему внешних уравнением моментов - student2.ru и внутренних уравнением моментов - student2.ru сил, т. е.

уравнением моментов - student2.ru

dТ = dA (2.8)

называется уравнением механической энергии или теоремой живых сил.

Для любого мысленно выделяемого индивидуального объема V сплошной среды, ограниченного поверхностью S, уравнения (2.6) — (2.8) остаются в силе, если динамические величины определить следующим образом:

уравнением моментов - student2.ru , уравнением моментов - student2.ru , уравнением моментов - student2.ru

соответственно количество движения, момент количества движе­ния и кинетическая энергия сплошной среды в объеме V;

уравнением моментов - student2.ru

уравнением моментов - student2.ru

соответственно сумма внешних объемных и поверхностных (непрерывно распределенных и сосредоточенных) сил к их момен­тов относительно некоторого неподвижного центра О, действую­щих на среду в объеме V;

уравнением моментов - student2.ru

сумма элементарных работ внешних и внутренних объемных и поверхностных сил.

В этом случае уравнения (2.6) и (2.7) являются основными постулируемыми динамическими соотношениями механики сплош­ной среды1, подобно второму закону Ньютона в механике материальной точки. Они служат исходными для описания любых движений любой сплошной среды, в том числе для разрывных движений и ударных процессов. 1 Эти уравнения для индивидуального объема сплошной среды не вытекают из подобных уравнений движения системы материальных точек, а являются самостоя­тельными.

Уравнение (4.8) одно из наиболее важных следствий уравнений (4.6) и (4.7) при непрерывных движениях в пространстве и времени.

При непрерывных движениях интегральная теорема движения (4.6) эквивалентна следующим трем дифференциальным уравне­ниям:

в цилиндрической системе координат при осевой симметрии

уравнением моментов - student2.ru

уравнением моментов - student2.ru (2.9)

уравнением моментов - student2.ru

в декартовой системе координат

уравнением моментов - student2.ru (i=1,2,3)

где проекции ускорения ai вычисляют по формулам (1.6).

Эти уравнения, связывающие компоненты vi вектора скорости уравнением моментов - student2.ru и тензора напряжений {σij}, являются основной системой дифференциальных уравнений движения для любой сплошной среды, представляющих собой уравнение баланса количества движения (или импульса) для бесконечно малого объема среды.

Если движения частиц происходят без ускорения (ai=0) или они пренебрежимо малы, то уравнения (2.9) называются дифферен­циальными уравнениями равновесия.

При непрерывном движении сплошной среды теорема момен­тов количества движения (2.7) в дифференциальной форме сводится к выводу о том, что тензор напряжений симметричен, т. е. σij = σji. Если тензор напряжений симметричен, то уравнения моментов количества движения удовлетворяются тождественно.

Интегральная теорема живых сил (2.8) эквивалентна следую­щему дифференциальному уравнению:

dТ = dЕ = dA(e) (2.10)

где уравнением моментов - student2.ru — соответственно изменение кинетической и потенциальной энергии бесконечно малого объема сплошной среды;

уравнением моментов - student2.ru — элементарная работа внешних объемных и поверхностных сил, действующих на бесконечно малый элемент объема среды.

Уравнение (2.10) является следствием уравнений движения (2.9) и представляет собой уравнение баланса механической энергии. В об­щем случае оно не является законом сохранения энергии, но его мож­но так трактовать тогда, когда механическая энергия тела не пере­ходит в тепловую или другие виды энергии. Общий закон сохранения энергии в этом случае распадается на два: закон сохранения механической энергии и закон сохранения энергии другого вида.

§ 3. УРАВНЕНИЯ СОСТОЯНИЯ (МАТЕМАТИЧЕСКИЕ МОДЕЛИ)

НБб-09 21.02

Уравнения неразрывности и движения (2.3) и (2.9), справедли­вые при непрерывных движениях любой сплошной среды, недоста­точны для описания поведения конкретной среды, так как их число меньше числа входящих в них неизвестных (перемещения, дефор­мации, скорости, напряжения и др.). Это понятно и с другой точки зрения. Различные реальные тела при одних и тех же внешних усло­виях ведут себя по-разному, что никак не отражено в общих уравне­ниях (2.3) и (2.9). Поэтому говорят, что такая система уравнений не замкнута. Построить замкнутую систему уравнений — значит построить математическую модель изучаемой сплошной среды. Для этого к имеющимся уравнениям необходимо присоединить так называемые механические уравнения состояния, которые выра­жают связь между кинематическими и динамическими величинами.

Механические свойства реальных тел довольно сложны, и поэтому уравнения состояния устанавливаются на основании опытных данных. В настоящее время для многих тел установлены определенные механические свойства и соответствующие им уравнения состояния.

В силу характерных особенностей различают математические модели твердых деформируемых тел, жидкостей и газов, хотя такое деление в определенном смысле условно.

С позиций механики сплошной среды твердые тела, жидкости и газы различаются по действию, оказываемому на них внешними силами, именно по неодинаковой сопротивляемости изменению формы. Газы практически не сопротивляются изменению формы, капельные жидкости сопротивляются изменению формы значи­тельно слабее, чем твердые тела. Кроме того, они различаются по характеру и степени проявления упругих, вязких и пластических свойств, их влиянию на изучаемый процесс.

Все это находит отражение в уравнениях состояния, т. е. в зависимостях между компонентами тензоров напряжений σij и деформаций εij (или скорости деформаций ξij) или компонентами девиаторов напряжений sij и деформации eij (или скорости деформаций λij). По существу эти уравнения являются классифи­катором разделов механики сплошной среды.

При формулировке инженерных задач не следует стремиться к использованию уравнений состояния, описывающих все детали механического поведения тела под воздействием внешних сил. Наоборот, целесообразно выбрать простейшую математическую модель, которая отражала бы лишь самые существенные свойства. В противном случае решить задачу будет либо чрезвычайно сложно, либо вовсе невозможно.

Приведем наиболее известные уравне­ния состояния, используемые в гидромеханике и механике твердо­го деформируемого тела.

Следует обратить внимание, что структурное сходство этих моделей придает общность исходным уравнениям механики сплошной среды, несмотря на существенное различие в физиче­ском поведении разных тел.

§ 4. УРАВНЕНИЯ СОСТОЯНИЯ ГИДРОМЕХАНИКИ

1. Модель идеальной жидкости– это простейшая механическая модель сплошной среды, для которой характерно отсутст­вие сопротивления (сил трения) при скольжении одного слоя жидкости по другому, отдельные части взаимодействуют только в виде нормального давления, т. е. в любой точке идеальной жидкости касательные напряжения

уравнением моментов - student2.ru ,

а нормальные напряжения

уравнением моментов - student2.ru ,

или через компоненты девиатора напряжений

уравнением моментов - student2.ru .

Уравнением состояния для этой жидкости служит зависимость плотности ρ от давления р и температуры Т:

уравнением моментов - student2.ru (2.11)

Для идеального газа приемлемо уравнение Клапейрона — Менделеева

уравнением моментов - student2.ru

Если плотность жидкости — функция только давления уравнением моментов - student2.ru , то жидкость называют баротропной.

Когда имеет место степенная зависимость ( с и n -постоянные), то говорят, что движение происходит при политропическом процессе.

уравнением моментов - student2.ru

Для капельных жидкостей сжимаемость чрезвычайно мала, и в большом диапазоне изменения давления принимается линейная зависимость

уравнением моментов - student2.ru

где ρ0 - плотность, соответствующая давлению р0; Кж - модуль объемного сжатия.

Порядок модуля объемного сжатия жидкостей равен 104 n МПа.

Экспериментальные данные и общие физические соображения показывают, что любая среда при очень больших температурах и давлениях практически обладает свойствами идеальной жидкости.

В нормальных условиях модель идеальной жидкости широко используется при изучении движения многих жидкостей и газов вдали от твердых границ.

Одно из наиболее известных уравнений движения идеальной жидкости — закон Бернулли

уравнением моментов - student2.ru

который гласит, что при установившемся движении несжимаемой идеальной жидкости сумма геометрической (z),скоростной (v2/2g) и пьезометрической (p/ρg) высот вдоль линии тока остается величиной постоянной.

уравнением моментов - student2.ru 2. Модель - вязкой ньютоновской жидкости - следую­щая по сложности, которую используют, когда силами трения или напряжениями сдви­ги при движении жидкости пренебречь нельзя, Уравнениями состояния для такой жидкости, кроме уравнения вида (2.11), уравнением моментов - student2.ru

будет

уравнением моментов - student2.ru (2.12)

т.е. прямо пропорциональная зависимость между компонентами девиатора напряжений и скоростей деформаций. Учитывая динамические величины и элементы теории напряжений, имеем равносильные уравнения, выраженные через компоненты тензоров напряжений и скоростей деформаций:

уравнением моментов - student2.ru

При плоском слоистом течении жидкости вдоль оси Оx1, когда v1 =v1(x1, х2), v2 = v3 = 0, нормальные и касательные напряжения равны:

уравнением моментов - student2.ru уравнением моментов - student2.ru

уравнением моментов - student2.ru

уравнением моментов - student2.ru

Если, кроме того, жидкость несжимаемая уравнением моментов - student2.ru и ско­рость v1 не зависит от х1, то уравнение состояния имеет простейший вид

уравнением моментов - student2.ru уравнением моментов - student2.ru уравнением моментов - student2.ru

Коэффициент пропорциональности μ называется коэффициен­том вязкости или динамической вязкостью жидкости. Размерность этого коэффициента, согласно соотношениям (2.12), будет ??????????????? уравнением моментов - student2.ru уравнением моментов - student2.ru

уравнением моментов - student2.ru уравнением моментов - student2.ru

Динамическая вязкость воды при 20° С равна 10-3 Па·с.

Иногда пользуются отношением μ/ρ, которое называется кинематической вязкостью и обозначается буквой υ. Размерность этой величины м2/с.

Для газов и капельных жидкостей динамическая и кинематическая вязкости слабо зависят от давления, но сильно от температуры. Как видно из данных, приведенных ниже, оба коэффициента вязкости воды убывают с повышением температуры, а коэффициенты вязкости воздуха возрастают. Эта закономерность свойственна всем жидкостям и газам.

Т О С
вода
103µ, Па∙с 1,792 1,005 0,656 0,469 0,357 0,284
106ν, м/с 1,792 1,007 0,661 0,477 0,367 0,296
воздух
105µ, Па∙с 1,709 1,808 1,904 1,997 2,088 2,175
104ν, м/с 0,132 0,15 0,169 0,188 0,209 0,23

Применяются различные эмпирические формулы зависимости вязкости газов и жидкостей от температуры, но из-за их сложности и малой общности предпочтительно пользоваться таблицами.

Свойствами ньютоновских жидкостей, описываемых уравнениями (2.12), обладает большинство чистых жидкостей и газов. Однако многие растворы, в том числе буровые и тампонажные, проявляют свойства, отличные от свойств ньютоновских жидкостей. Вязкость таких неньютоновских жидкостей зависит не только от температуры и давления, но и от скорости сдвига, деформации, времени, характера движения.

3. Модель неньютоновского поведения жидкостей.

Их основной признак заключается в нелинейной зависимости между компонентами девиаторов напряжений и скоростей деформаций.

уравнением моментов - student2.ru

уравнением моментов - student2.ru

уравнением моментов - student2.ru

Рис 2.1 Характерные зависимости напряжения сдвига от скорости деформации сдвига:

1 – псевдопластичная жидкость;

2 – дилатантная жидкость;

3 – ньютоновская жидкость.

На рис 2.1 показаны две характерные кривые зависимости напряжения сдвига уравнением моментов - student2.ru от скорости деформации сдвига уравнением моментов - student2.ru для неньютоновских жидкостей при плоском прямолинейном установившемся движении вдоль оси Ох1. Здесь же для сопоставления штрихпунктиром показана линейная зависимость для ньютоновской жидкости.

Поведение жидкости, описываемое кривой 1, называется псев­допластичным, а кривой 2 — дилатантным. Предлагалось много различных вариантов аппроксимации этих кривых. Но наиболее широкое применение получили двухпараметрические аппроксимации:

а) модель Шведова — Бингама

уравнением моментов - student2.ru (2.13)

используемая для псевдопластичных жидкостей;

б) модель Освальда — Вейля, или степенная модель,

уравнением моментов - student2.ru (2.14)

используемая для обоих типов жидкостей, где τ0 — предельное (или динамическое) напряжение сдвига; η — пластическая (или структурная) вязкость; k — показатель консистенции; п — показа­тель неньютоновского поведения: при п < 1 жидкость псевдо­пластичная, при п>1 — дилатантная.

Между параметрами моделей (2.13) и (2.14) легко устанавли­вается следующая связь:

уравнением моментов - student2.ru уравнением моментов - student2.ru

уравнением моментов - student2.ru уравнением моментов - student2.ru

где уравнением моментов - student2.ru — скорость деформации сдвига, выше которой зависимость уравнением моментов - student2.ru от уравнением моментов - student2.ru практически линейная (см. рис. 10).

Так как в системе единиц СИ размерность величин [ уравнением моментов - student2.ru ] = Па, [η] = Па·с, и [ уравнением моментов - student2.ru ] = с-1, то размерность параметра [k] = Па·с.

Среда, для которой справедливо уравнение (2.13), называется вязкопластичной бингамовской жидкостью. Она характеризуется тем, что обладает пространственной жесткой структурой и благодаря этому сопротивляется внешнему воздействию до тех пор, пока вызванное им напряжение сдвига не превзойдет предельного значения, соответствующего этой структуре. После этого структура полностью разрушается и жидкость начинает вести себя как обычная ньютоновская вязкая жидкость при кажущемся напряжении, равном избытку действительного напря­жения τ над предельным τ0. При уменьшении этого кажущегося напряжения до нуля пространственная жесткая структура восста­навливается.

Необходимо подчеркнуть, что реологические параметры η, τ0 и k, п для бурового и тампонажного растворов зависят от тем­пературы, давления, состава и диапазона изменения скорости деформации сдвига уравнением моментов - student2.ru , для которой справедливы модели (2.13) и (2.14).

уравнением моментов - student2.ru

4. Модель неньютоновских несжимаемых вязкопластичных жидкостей при ламинарном (структурном) режиме течения. Чтобы установить характер зависимости между касатель­ными напряжениями и скоростями деформации сдвига и определить реологические параметры жидкости в заданных условиях, используют наиболее простые формы движения: установившееся ламинарное (слоистое) течение жидкости вдоль оси цилиндрической трубы или тангенциальное течение между двумя соосными цилиндрами, т. е. течения, при которых линии тока — прямые линии или концентрические окружности. Подобные течения реализуются в специальных приборах, называемых капиллярными и ротационными вискозиметрами соответственно.

При течении жидкости в трубке радиуса R задают объемный расход Q и измеряют разность давлений Δр в двух точках потока, расположенных вдали от концов трубки на расстоянии L друг от друга. В координатах средней скорости деформации сдвига уравнением моментов - student2.ru и касательного напряжения у поверхности трубки уравнением моментов - student2.ru строится график.

Этот график в общем случае необходимо перестроить в координатах локальной скорости деформации сдвига уравнением моментов - student2.ru и напряжения τ, используя для этого уравнение :

уравнением моментов - student2.ru

Однако легко показать, что для вязких и вязкопластичных жидкостей, описываемых уравнениями (2.13) или (2.14), перестраивать график уравнением моментов - student2.ru ~ τ в уравнением моментов - student2.ru ~ τ нет необходимости, достаточно только реологические параметры τ0 и

уравнением моментов - student2.ru - для модели Шведова — Бингама и

уравнением моментов - student2.ru — в степенной модели, где уравнением моментов - student2.ru и уравнением моментов - student2.ru — параметры, определенные зависимостью уравнением моментов - student2.ru от τ.

При течении жидкости между двумя вертикальными соосными цилиндрами длиной L, из которых наружный вращается с угловой скоростью ω, реологические параметры для бингамовской жид­кости (2.13) могут быть определены из соотношения

уравнением моментов - student2.ru

а для жидкости, соответствующей степенной модели (2.14), из формулы

уравнением моментов - student2.ru

где М – вращающий момент, приложенный к наружному цилиндру; α = R0/R; R0 , R - радиусы внутреннего и внешнего цилиндров соответственно.

Для производственного течения несжимаемых уравнением моментов - student2.ru вязкопластичных жидкостей используются следующие уравнения состояния, обобщающие уравнения (2.12) и модели (2.13), (2.14):

уравнением моментов - student2.ru при уравнением моментов - student2.ru

уравнением моментов - student2.ru при уравнением моментов - student2.ru (2.15)

и уравнением моментов - student2.ru (2.16)

где H1, Т — интенсивность скоростей деформации сдвига при уравнением моментов - student2.ru и интенсивность касательных напряжений.

При определенных нестационарных режимах течения буровые и тампонажные растворы могут проявлять дополнительные свой­ства неньютоновского поведения:

тиксотропность — зависимость жесткости структуры от продол­жительности деформирования и предыстории движения;

запаздывание во времени установления деформации при дей­ствии постоянного напряжения или, наоборот, запаздывание во времени установления напряжений при постоянной деформации (релаксация напряжений) и т. д.

Количественное изучение этих и других важных свойств до настоящего времени остается в значительной степени неразрабо­танным разделом механики жидкостей вообще, а для буровых и тампонажных растворов не выходит за пределы отдельных опытных иллюстраций.

Тот факт, что вязкие или вязкопластичные свойства, а следовательно уравнения состояния (2.15), (2.16), будут определяющими лишь при ламинарном (или структурном) режиме течения, т. е. тогда траектории частиц жидкости имеют вполне определенное, упорядоченное (регулярное) направление, - наиболее существенная особенность движения любой жидкости.

5. Модель неньютоновских вязкопластичных жидкостей при турбулентном режиме течения - неупорядоченном (нерегулярном), хаотическом движении. Опыты показывают, что по мере увеличения скорости течения всякое упорядоченное движение частиц жидкости постепенно нарушается и переходит в новую форму — турбулентное движение, при котором движение частиц становится неупорядоченным (нерегулярным), хаотическим.

Процессы возникновения и развития такого движения носят случайный характер и не поддаются строгому теоретическому анализу, требуя для своего изучения своеобразных статистических методов.

До настоящего времени нет ясного представления, как ламинарное движение вязкой жидкости становится турбулентным, несмотря на то, что первые научные наблюдения турбулентных движений были выполнены сто двадцать восемь лет тому назад!!! Еще сложнее проблема разрушения структурного режима течения буровых и тампонажных растворов и переход его в развитое турбулентное движение. Английский физик О. Рейнольдс, изучая движение воды цилиндрической трубе, в 1883 г. впервые обнаружил, что переход ламинарного движения в турбулентное наступает при достижении критического значения некоторого безразмерного параметра

уравнением моментов - student2.ru (2.17)

где уравнением моментов - student2.ru - средняя скорость потока; d — диаметр трубы; уравнением моментов - student2.ru — соответственно плотность и вязкость жидкости.

По опытным данным О. Рейнольдса, нижняя граница критического числа Reкр составила 2000, а верхняя — 13000. В последующем более тщательными опытами было установлено, что для ньютоновских жидкостей наиболее вероятная нижняя граница равна 2320, а верхнюю можно довести до 50000. Оказалось, что запаздывание ламинарного течения связано с удалением возмущений на входе в трубу. Чем плавнее вход в трубу, тем позже наступает турбулентный режим.

Опытами было установлено также, что на величину верхней границы Reкр сильное влияние оказывают отклонение трубы от цилиндрической формы, заметная шероховатость поверхности трубы, наличие в жидкости твердых тел, коллоидных или дисперсных образований, изменение граничных условий, действие внешних возмущений и другие факторы.

Для вязкопластичных сред переход от структурного режима
течения к турбулентному принято определять с помощью обоб­щенного параметра Рейнольдса:

для степенной модели

уравнением моментов - student2.ru (2.18)

для модели Шведова — Бингама

уравнением моментов - student2.ru (2.19)

Нижняя граница критических значений обобщенных парамет­ров Rе', Rе* равна 2100.

Наряду с изучением переходных процессов в цилиндрических трубах были изучены движение жидкостей в пространстве между соосными цилиндрами в осевом и тангенциальном направлениях и при обтекании твердых тел набегающим потоком жидкости, а также обнаружено качественное сходство переходных процессов, определя­емых по тем же параметрам Рейнольдса (2.18) и (2.19), где под d следует понимать характерное сечение потока или линейный размер тел.

Изучение переходных режимов и практическое определение Rе базируются главным образом на установлении опытной зависимости коэффициента гидравлического сопротивления от параметра Рей­нольдса, соответствующего данной реологической модели.

Отличительным признаком турбулентных течений является зависимость скорости от времени в любой точке потока. Для количественного описания турбулентных течений О. Рейнольдc предложил действительные скорости потока vi (i = 1, 2, 3) в данной точке представлять в виде суммы средних во времени скоростей уравнением моментов - student2.ru и пульсационных скоростей (пульсаций) уравнением моментов - student2.ru , т. е. уравнением моментов - student2.ru . Анало­гично представляется и давление уравнением моментов - student2.ru . Форма уравнений движения и неразрывности сохра­няется. В этом случае следует только заменить скорости vi и давление р средними скоростями уравнением моментов - student2.ru и давлениями уравнением моментов - student2.ru , а вместо напряжений уравнением моментов - student2.ru использовать сумму

уравнением моментов - student2.ru

где уравнением моментов - student2.ru — компоненты напряжений, связанные со средними ско­ростями уравнениями состояния (2.12), (2.15) или (2.16); уравнением моментов - student2.ru — допол­нительные компоненты напряжений, возникающие вследствие пульсаций, они называются напряжениями Рейнольдса.

Иначе говоря, доказана возможность применения основных уравнений движения механики сплошной среды для решения задач турбулентного течения при условии, что величины vi, р и уравнением моментов - student2.ru , входящие в эти уравнения, заменены соответственно на величины уравнением моментов - student2.ru , уравнением моментов - student2.ru и уравнением моментов - student2.ru .

Предложено несколько полуэмпирических уравнений состояния для напряжений Рейнольдса уравнением моментов - student2.ru . Наиболее известно и широко используется уравнение Прандтля:

уравнением моментов - student2.ru (2.20)

где l —коэффициент, характеризующий геометрическую структуру турбулентного потока, называемый путем смешения (перемешивания) или масштабом турбулентности, зависящий от расстояния до стенки канала.

В частном случае при течении жидкости между параллельными плоскостями в направлении оси Ох1 уравнение (2.20) принимает вид

уравнением моментов - student2.ru

Прандтль, анализируя свойства турбулентного потока в трубах вблизи твердой стенки, принимал l = 0,36s, где s — расстояние от стенки трубы.

6. Модель неньютоновских многокомпонентных смесей вязкопластичных жидкостей при любых режимах течения. Таким образом, общая задача гидромеханики в определении компонент vi (i = 1, 2, 3) вектора скорости уравнением моментов - student2.ru , компонент симметричного девиатора напряжений sij =sji (i, j=1, 2, 3), давления р и плотности ρ жидкости в любой точке области.

В общем случае эти одиннадцать искомых функций должны в ламинарном режиме течения удовлетворять следующей системе дифференциальных уравнений:

движения

уравнением моментов - student2.ru (i=1, 2, 3); (2.21)

неразрывности движения или сохранения массы

уравнением моментов - student2.ru (2.22)

и механического состояния

s = f(p); (2.23)

уравнением моментов - student2.ru (2.24)

Подставляя в уравнения (2.21) соотношения (2.24)можно получить уравнения Навье — Стокса, Генки — Ильюшина и др.

При турбулентных течениях жидкостей и газов, согласно сказанному выше, система уравнений (2.21) — (2.24) сохраняет свой вид, но под величинами vi, уравнением моментов - student2.ru , р необходимо понимать усреднен­ные по времени значения уравнением моментов - student2.ru , уравнением моментов - student2.ru , уравнением моментов - student2.ru , где напряжения Рейнольдса уравнением моментов - student2.ru связаны с компонентами средних скоростей деформаций уравнением моментов - student2.ru , например, уравнением Прандтля (2.20).

Для удобства выпишем обозначения основных величин:

уравнением моментов - student2.ru - компоненты девиаторов напряжений и скоростей деформаций соответственно;

уравнением моментов - student2.ru - символ Кронекера;

уравнением моментов - student2.ru — соотношения Коши; (2.25)

уравнением моментов - student2.ru — скорость деформации объема;

уравнением моментов - student2.ru — проекции объемных сил и ускорении;

уравнением моментов - student2.ru -(2.26)

интенсивность касательных напряжении;

уравнением моментов - student2.ru - (2.27)

интенсивность скорости деформации сдвига при ξ=0.

Единственность и однозначность решения системы дифференциальных уравнений (2.21) - (2.24) возможны лишь при выполнении граничных условий:

уравнением моментов - student2.ru — на поверхности контакта жидкость - твердое тело и (или) p=p0 - на свободной поверхности, где уравнением моментов - student2.ru , р0 - заданные величины скорости твердого тела и внешнее давление.

Общего аналитического решения системы уравнений (2.21) — (2.24) не существует, и, как правило, в этом нет нужды, если речь идет о прикладных задачах. Обычно при решении конкретной инженерной задачи вводят ряд геометрических и физических допущений, не умаляющих, однако, основного характерного признака движения. Здесь важно свести уравнения и граничные условия к простейшему виду так, чтобы сохранить лишь главную цель задачи. Если все же граничная задача оказывается сложной, неподдающейся точному аналитическому решению, то применяют какой-либо приближенный метод решения или ставят эксперимент, используя для этого основные положения теории подобия.

В любом случае теоретической основой решения любой задачи гидромеханики является система уравнений (2.21) — (2.24) в том ином упрощенном виде.

Наши рекомендации