Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме

Уравнения Максвелла для зарядов в вакууме, получаемые путем вариации функционала действия, представляют собой соотношения, связывающие компоненты тензора электромагнитного поля и 4-вектора плотности электрического тока. Тензор электромагнитного поля Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru является кососимметричным тензором второго ранга типа Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru . В лабораторной системе координат Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , он имеет следующий вид [2]:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru (1)

Наборы компонент Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru и Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru тензора Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru составляют 3-векторы электрического Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru и магнитного Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru полей соответственно.

Лабораторные координаты в дальнейшем будем обозначать Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru . Введем координаты Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , соответствующие собственному времени:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru . (2)

Рассмотрим Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru – тензор электромагнитного поля в координатах Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru :

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru (3)

Установим соответствие между компонентами тензоров Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru и Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru . Для этого построим матрицы Якоби замены координат Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru на Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru :

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , (4)

и вычислим явно, как преобразуется тензор электромагнитного поля [3]:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru ,

откуда

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru .

Первая пара уравнений Максвелла в тензорном виде имеет следующий вид [2]:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru (5)

Здесь операция Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru – внешнее дифференцирование кососимметрического тензора

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru .

Эта операция является тензорной [4], то есть ее координатная запись не зависит от выбора системы координат. Поэтому

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru .

В силу этого первая пара трехмерных уравнений Максвелла в собственном времени:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru ,

где Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru и Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru обозначают дивергенцию и ротор в координатах Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , а Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru .

Рассмотрим преобразование 4-вектора плотности электрического тока Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru при переходе (2) из координат Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru в координаты Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru . Пусть в координатах Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , где Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru – плотность заряда, Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru – 3-плотность электрического тока. Тогда в координатах Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru . (6)

Вторая пара уравнений Максвелла с помощью тензора электромагнитного поля и 4-вектора плотности тока записывается в следующем виде:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , (7)

где Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru обозначает ковариантное дифференцирование, а

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru ,

где Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru – метрический тензор в координатах Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru ,

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru .

В координатах Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru .

Ковариантное дифференцирование является тензорной операцией. Уравнение (7) в произвольных координатах имеет следующий вид:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , (8)

где Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru – символы Кристоффеля.

Рассмотрим второе слагаемое в уравнении (8). Вычислим символы Кристоффеля в координатах Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru [4]:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru .

Среди всех комбинаций, возможных в правой части, только Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , отличны от нуля. Во второе слагаемое (8) входят только те символы Кристоффеля вида Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru , которые равны нулю. Третье слагаемое представляет собой свертку символов Кристоффеля, симметричных по нижним индексам Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru с тензором, кососимметрическим по тем же индексам, поэтому оно равно нулю. Значит, в координатах Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru уравнение (8) имеет вид:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru

Отсюда следует вторая пара трехмерных уравнений Максвелла:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru ,

где Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru .

Таким образом, полная система уравнений Максвелла в собственном времени, то есть в координатах Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru имеет следующий вид:

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru ,

Уравнения Максвелла для заряженных частиц в вакууме в тензорной форме, получение из них уравнений в дифференциальной векторной форме - student2.ru

Наши рекомендации